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Abstract. There is overwhelming empirical evidence that deep neural networks trained with stochastic
gradient descent perform (extremely) well in the high dimensional settings. Nonetheless, a complete
mathematical theory that would provide theoretical guarantees why and when these methods work so
well has been elusive. In this mini-course, I will demonstrate how one may leverage control theory and
the theory of statistical sampling to study the convergence of stochastic gradient algorithms used in
deep learning. Conversely, I will show that machine learning perspective leads to new algorithms for
(stochastic) control problems and offers a fresh perspective on classical quantitative finance problems.

The course will consist of 4 parts.
• Mean-Field Langevin Dynamics. In this part of the course, I will show that training of one hidden

layer neural network can be framed as an optimisation problem over Wassersatin space. I will show
that under appropriate conditions, the flow of marginal laws induced by the corresponding gradient
flow converges to a stationary distribution, which is exactly the minimiser of the functional one
aims to optimise. See [?] for more details.

• Neural ODEs via Relaxed Optimal Control. I this part, of course, I will demonstrate that by using
the theory of relaxed optimal controls one can extend the analysis of one-hidden layer to neural
ODEs that are a model for deep recurrent neural networks. Using calculus on Wasserstein space,
it is possible to offer a perspective on the generalisation error. See [2] for more details.

• Gradient flows for stochastic control problem. While control theory provides a useful perspective
when analysing deep learning, machine learning point of view leads to new algorithms for solving
stochastic control problems. In this part of the course, I will extend the analysis developed for
Neural ODEs to solve the regularised stochastic control problem. See [3] for more details.

• Robust pricing and hedging with neural SDEs In the final part of the mini-course, I will show that
neural SDEs provide an attractive class of models that seamlessly integrate deep neural networks
with classical quantitive finance models. In particular by using neural SDE one can: a) consistently
calibrate these under the risk-neutral measure as well as the real-world measure; b) easily integrate
additional market information; c) verify martingale property; d) build market generators. See [1]
for more details.
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