## FROM THE THEORY OF(STOCHASTIC) CONTROL TO DEEP LEARNING AND BACK.

## ŁUKASZ SZPRUCH

ABSTRACT. There is overwhelming empirical evidence that deep neural networks trained with stochastic gradient descent perform (extremely) well in the high dimensional settings. Nonetheless, a complete mathematical theory that would provide theoretical guarantees why and when these methods work so well has been elusive. In this mini-course, I will demonstrate how one may leverage control theory and the theory of statistical sampling to study the convergence of stochastic gradient algorithms used in deep learning. Conversely, I will show that machine learning perspective leads to new algorithms for (stochastic) control problems and offers a fresh perspective on classical quantitative finance problems.

The course will consist of 4 parts.

- Mean-Field Langevin Dynamics. In this part of the course, I will show that training of one hidden layer neural network can be framed as an optimisation problem over Wassersatin space. I will show that under appropriate conditions, the flow of marginal laws induced by the corresponding gradient flow converges to a stationary distribution, which is exactly the minimiser of the functional one aims to optimise. See [?] for more details.
- Neural ODEs via Relaxed Optimal Control. I this part, of course, I will demonstrate that by using the theory of relaxed optimal controls one can extend the analysis of one-hidden layer to neural ODEs that are a model for deep recurrent neural networks. Using calculus on Wasserstein space, it is possible to offer a perspective on the generalisation error. See [2] for more details.
- Gradient flows for stochastic control problem. While control theory provides a useful perspective when analysing deep learning, machine learning point of view leads to new algorithms for solving stochastic control problems. In this part of the course, I will extend the analysis developed for Neural ODEs to solve the regularised stochastic control problem. See [3] for more details.
- Robust pricing and hedging with neural SDEs In the final part of the mini-course, I will show that neural SDEs provide an attractive class of models that seamlessly integrate deep neural networks with classical quantitive finance models. In particular by using neural SDE one can: a) consistently calibrate these under the risk-neutral measure as well as the real-world measure; b) easily integrate additional market information; c) verify martingale property; d) build market generators. See [1] for more details.

## References

- [1] P. Gierjatowicz, M. Sabate-Vidales, D. Siska, L. Szpruch, and Z. Zuric. Robust pricing and hedging via neural sdes. Available at SSRN 3646241, 2020.
- [2] J.-F. Jabir, D. Šiška, and L. Szpruch. Mean-field neural odes via relaxed optimal control. arXiv:1912.05475, 2019.
- [3] D. Šiška and L. Szpruch. Gradient flows for regularized stochastic control problems. arXiv preprint arXiv:2006.05956, 2020.