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Goal of this talk is ...

to understand training as a calibration problem.
to highlight on some aspects in training procedures.
to show some applications to model calibration in finance.

(joint works with Christa Cuchiero, Matteo Gambara, Wahid
Khosrawi-Sardroudi)
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Optimization problems and inverse problems

Optimization by integration

We start with a very generic point of view on optimization: consider a
non-negative measurable function f on a probability space (Θ, π0), then
calculating the essential supremum of f corresponds to calculating its
∞-norm, for which a well-known formula exists

lim
n→∞

||f ||n = ||f ||∞ .
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Optimization problems and inverse problems

Optimization by integration

We can interpret this equality in the case f = exp(−L) for a finite
measurable function L and obtain immediately

ess-infθ∈Θ L(θ) = − lim
n→∞

1

n
log
(∫

exp
(
− nL(θ)

)
π0(dθ)

)
(EQ) .
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Optimization problems and inverse problems

Laplace principle

Assume additionally that L is bounded from below. Then we expect the
integrand to concentrate at arguments where values close to infima are
taken, in other words it is worth investigating the probability measure

πn(dθ) :=
exp

(
− nL(θ)

)
π0(dθ)∫

exp
(
− nL(θ)

)
π0(dθ)

.

Concentration around arguments where values close to infima are taken
can be interpreted by proving that

lim
n→∞

πn[A] = 0

for all measurable sets A such that there exists ε > 0 and
L(θ) > ess-infθ∈Θ L(θ) + ε for θ ∈ A.
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Optimization problems and inverse problems

Bayesian optimization

Summing up this yields the following statement: for a measurable function
L essentially bounded from below the measure πn concentrates at
arguments where values close to the infimum are taken.

This statement has a Bayesian interpretation. Consider π0 as prior on Θ
and consider L a (negative) log-likelihood, then π1 is the posterior
calculated by Bayes formula (when do not have data in the moment), πn
appears as interation of this procedure and concentrates at arguments for
the likelihood maximizes.
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Optimization problems and inverse problems

Bayesian inverse problems

Let us introduce data in the next step, i.e. we consider the function L as a
measurable function of two variables z , the data, and θ, the parameter, on
a product space Z ×Θ, where Z only has a measurable structure. We
shall write Lz := L(z , .) and assume this function to be bounded from
below and measurable. Then we can apply the previous considerations in a
data-dependent way.

As a remark we add: for fixed θ ∈ Θ we can sometimes view
z 7→ exp(−Lz(θ)) as density of a random variable Z with respect to some
reference measure ν on Z . In this case the fully Bayesian interpretation
takes place, but actually we do not need this here.
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Optimization problems and inverse problems

Inverse problems

A parameter-dependent optimization problem is an inverse problem: we
are interested in describing a map

z 7→ θ∗(z) ∈ arginfθ∈Θ Lz(θ)

for some z ∈ Z . We give ourselves additionally topologies on Z and Θ
with corresponding sigma algebras being the Borel sigma algebras. We can
require, following Jacques Hadamard, the following properties of such a
map:

1 Existence for a large subset of Z .

2 Uniqueness for a large subset of Z .

3 Stability where it is uniquely defined, i.e. continuity as a map from Z
to Θ.
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Optimization problems and inverse problems

Regularized inverse problem

Usually it is delicate to guarantee the three properties, which, however, are
important if z ∈ Z are considered data and θ∗(z) ∈ Θ a selected model
(identifified by a parameter). Often those properties can be achieved if the
problem is replaced by a regularized problem by adding a regularization
term P : Θ→ R>0, i.e. we consider

infθ∈Θ Lz(θ) + λP(θ) ,

where λ > 0 is an additional parameter.
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Optimization problems and inverse problems

This by now classical theory has been developed in many directions, we
shall compare it here with the above developed Bayesian perspective.
Consider a reference measure ν on Θ and define a prior

π0(dθ) =
exp(−λP(θ))ν(dθ)∫
exp(−λP(θ))ν(dθ)

.

Then the posterior

πn(dθ) =
exp(−nLz(θ)− λP(θ))ν(dθ)∫
exp(−nLz(θ)− λP(θ))ν(dθ)

can be considered a generalized solution of the inverse problem (depending
on parmaters n and λ), which concentrates at arguments, where values of
Lz + λ

nP are close it their infimum. Notice that it is relatively easy to
guarantee that πn depends continously on z .
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Optimization problems and inverse problems

Via regia to calculate optima

The law

pε(θ)dθ :=
1

Zε
exp

(
− Lz(θ)

ε

)
dθ ,

where denominator Zε is just the integral
∫

Θ exp(−Lz(θ)/ε)dθ.

The measure pεdλ is the invariant measure of the stochastic differential
equation

dθt = −1

2
∇Lz(θt)dt +

√
εdWt ,

which is just checked by the following equality∫
Θ

(
− 1

2
∇Lz(θ)∇f (θ) +

ε

2
∆f (θ)

)
pε(θ)dθ = 0

for all test functions f .

This can also be seen as a gradient flow on probability measures with
respect to the Riemannian structure corresponding to
Wasserstein-2-distance (see talk of Lukasz Szpruch for all references).
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Optimization problems and inverse problems

Subriemannian via regia to calculate Optima

The law

pε(θ)dθ :=
1

Zε
exp

(
− Lz(θ)

ε

)
dθ ,

where denominator Zε is just the integral
∫

Θ exp(−Lz(θ)/ε)dθ.

The measure pεdλ is the invariant measure of the stochastic differential
equation

dθt = −1

2

d∑
i=1

(ViL
z)(θt)Vi (θt)dt +

√
ε

d∑
i=1

Vi (θt) ◦ dW i
t ,

where V i are standard vector fields on a nilpotent Lie group Gm
d (being

homeomorphic to some RM).

This can also be seen as gradient flow on probability measures with
respect to the Riemannian structure corresponding to the sub-Riemannian
Wasserstein-2-distance (see, e.g., work of Baudoin-Hairer-T).
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Optimization problems and inverse problems

The free energy

The quantity of which gradients are taken is

F (ρ) :=
1

2

∫
Θ
Lz(θ)ρ(θ)dθ +

ε

2

∫
Θ

log ρ(θ)ρ(θ)dθ

for measures m(dθ) = ρ(θ)dθ absolutely continues with respect to
Lebesgue measure. This can also be understood as relative entropy of ρdθ
with respect to pε times ε/2.

The gradient flow can also be understood in the following way: consider a
starting law ρ0 and solve the recursion

arginf{ρ | 1

2
d(ρk , ρ)2 + hF (ρ)}

for time intervals of length h (this is the variational version of the gradient
flow on Wasserstein-2-space).
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Optimization problems and inverse problems

Gradients in Wasserstein geometry

The gradient of a function m 7→ F (m) has to satisfy

d

ds
|s=0F (m + sη) =

∑
i

∫
Θ
Di

mF (θ)Vig(θ)m(dθ)

with respect to the flat derivative. The signed measure η is a tangent
direction for the flat derivative formed from a tangent direction at m,
which is given through transport by a flow with vector field

∑
i VigVi , i.e.∫ ∑

i

(VigVi f )(θ)m(dθ) = −
∫

f (θ)η(dθ)

for test functions f and potentials g .
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Optimization problems and inverse problems

Mean field aspect

Assume that Θ is a convex polish space, in particular for probability
measures m ∈ P(Θ) it makes sense to consider the barycenter of m which
lies again in Θ.

Having the previous Langevin dynamics in mind, one can consider

dθt = −1

2

d∑
i=1

(Dlaw(θt)L
z) (θt)dt +

√
ε

d∑
i=1

Vi (θt) ◦ dW i
t ,

where the law of θt appears as an additional quantity in the loss function,
which takes into account the behavior of searches depending on the initial
value θ0. Dm is the Lions derivative with respect to subriemmanian
Wasserstein geometry at m.

Again we can understand the solution of this McKean-Vlasov dynamics as
a gradient flow on probability measures with respect to corresponding
natural structures, or as a limit of particle systems.
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Optimization problems and inverse problems

Training a feed forward neural network

We assume a feedforward neural network gθ on Rk depending on trainable
parameters θ ∈ RM for a supervised learning task to take values yi ∈ Rl at
xi ∈ Rk , for i = 1, . . . ,N. We define a loss function

Lz(θ) =
1

N

N∑
i=1

(gθ(xi )− yi )
2

=
1

N/k

N/k∑
i=1

li (θ) ,

where we understand ’data’ z as the collection of (xi , yi ) and write the loss
function with minibatches of size k.

The stochastic gradient descent (SDG) algorithm essentially does the
following (with respect to a learning rate γn)

θn+1 = θn − γn∇ln(θn)

where θ0 is sampled from an initial distribution and which is relatively
early stopped.
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Optimization problems and inverse problems

At this point it is questionable whether this samples from any of the
previous continuous time via regias, in particular since in the previous
approaches the initial value does not play a role whereas it does to some
extent in the the SDG above.

Implicit regularization: regularizing impact of initial distribution
(comparable to classical regularization functionals) and regularizing impact
of minibatching (possibly entropic on probability measures).
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An exemplary result for implicit regularization

Randomized shallow networks (RSN)

Let X ⊂ Rd compact, σ : R→ R Lipschitz continuous activation function.
RNw : X → R s.t.

RNw (x) :=
n∑

k=1

wk σ

bk +
d∑

j=1

vk,jxj

 (RSN)

n ∈ N
wk ∈ R, k = 1, . . . , n
(bk , vk) ∼ P, i.i.d. k = 1, . . . , n. P probability measure on Rd+1.
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An exemplary result for implicit regularization

Randomized shallow networks (RSN) - II

Corollary 1. Universal in probability

RSNs are universal in probability, i.e. let f ∈ C (X ,R). If P� λd+1 then

∀ε ∈ R+, lim
n→∞

Pn (∃w ∈ Rn : ||RNw − f ||∞ > ε) = 0.

Lemma 2. Almost sure perfect interpolation

Let observations (xi , yi ) ∈ Rd × R, i = 1, . . . ,N be given.For any
P� λd+1, a perfectly trained RSN with n ≥ N hidden nodes almost
surely interpolates the data, i.e.

Pn(∃w ∈ Rn : RNw (xi )=yi , ∀i = 1, . . . ,N) = 1.
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An exemplary result for implicit regularization

RSN and gradient descent - implicit regularization in 1d

Setting

D := {(xi , yi ) ∈ R× R, i = 1, . . . ,N}
RNw : R→ R, RNw (x) :=

∑n
k=1 wk (bk + vkx)+

−bk/vk ∼ g, g probability density w.r.t. Lebesgue measure

Claimed Goal

approximate fD using standard least squares

min
w∈Rn

1

N

N∑
i=1

(RNw (xi )− yi )
2 = min

w∈Rn
L(w) (LS)

using τ := T/γ iterations of discretized gradient descent
dwt = −∇L(wt) dt, w0 = 0 for some stepsize γ > 0.
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An exemplary result for implicit regularization

RSN and gradient descent - implicit regularization in 1d

compare

1 time T solution RNwT
of

min
w∈Rn

1

N

N∑
i=1

(RNw (xi )− yi )
2 = min

w∈Rn
L(w) (LS)

using τ := T/γ iterations of discretized gradient descent
dwt = −∇L(wt) dt, w0 = 0 for some stepsize γ > 0.

2 smooth spline sλ, solution to

min
f ∈C2

1

N

N∑
i=1

(f (xi )− yi )
2 + λ

∫
R

(
f ′′
)2

(z) dz (SP)

smooth spline interpolation s := lim
λ→0

arg min sλ
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An exemplary result for implicit regularization

RSN and gradient descent - implicit regularization in 1d

Theorem (Heiss, Teichmann, Wutte (2020))

RNwT (n) =
∑n

k=1 wT ,k σ (bk + vkx) . . . time-T solution of problem
(LS)
s . . . smooth spline interpolation

Then ||RNwT
− s||W 1,∞(K)

P−→
T ,n→∞

0

||RNwT
− s||W 1,∞(K) ≤

∣∣∣∣∣∣RNwT
−RNwR(n/T )

∣∣∣∣∣∣
W 1,∞(K)︸ ︷︷ ︸

−→
T→∞

0

+
∣∣∣∣∣∣RNwR(n/T ) − s

∣∣∣∣∣∣
W 1,∞(K)︸ ︷︷ ︸

P−→
T ,n→∞

0

where the intermediate term is a ridge regression.
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Inverse Problems in Finance: calibration

The calibration problem

Let us first introduce the problem. We have a pool of models Θ, which is
parameterized by parameter vector θ ∈ Θ, and we have prices of financial
products, which can be calculated for a given parameter θ. Take for
instance the Black-Scholes model, where the parameter vector
θ = (S0, σ, r) consists of today’s price S0, a volatility parameter σ and an
interest rate r . Prices of financial products could be calculated for any
path-dependent European or American option.
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Inverse Problems in Finance: calibration

The calibration problem

Given a such a pool of a models, a price structure which can be calculated
given a model θ ∈ Θ and a price structure from real markets, the market
price structure (later always referred to as data), what is the most
appropriate model to choose. Most appropriate has to be specified by a
loss function

θ 7→ Ldata(θ)

which measures the distance of the model price structure to the market
price structure.

Whence we are interested in minimizing θ 7→ Ldata(θ) for θ ∈ Θ. The
calculation of possible minimizers θ∗ is called calibration (problem). It is a
typical example of an inverse problem, which we have already encountered
in the lecture about training. In this setting we do neither develop a theory
of regularization, as we have done in the lecure about training, nor do we
look into Bayesian approaches, but we rather focus on particular features
manifest in calibration problems.
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Inverse Problems in Finance: calibration

Remarks

1 In typical pricing models (SDE models of affine type, models with easy
to evaluate characteristics, etc) it is often relatively easy to evaluate
Ldata(θ) for a given parameter θ ∈ Θ. Models, where this evaluation
is difficult, have been rarely used in industry, for instance dynamic
models for implied volatility surfaces or rough volatility models. Still
some computational effort lies in this procedure and often only models
are used where actually the loss function can be easily evaluated.

2 Even if it is easy to evaluate the loss function given data, the inverse
problem is often high dimensional and a high accuracy is desired, i.e.
the loss has to be really small. This is in contrast to inverse problems
which appear in training where it is often not a priori clear which loss
is desirable.

3 Regularization might complicate the problem considerably.

37 / 48



Inverse Problems in Finance: calibration

Three ML approaches

(ambitious approach) learn the map

data 7→ θ∗

directly. If it works it is of course a wonderful tool, but one needs to
be aware that one learns a possibly quite irregular map (if no explicit
regularization has been used).

(modest approach) learn the map

θ 7→ data

which is relatively easy to generate and often quite regular. Next
solve the inverse problem by replacing the pricing functional through
its learned approximation.

(neural model approach) take a modelling approach which includes
neural networks right away and train those models to perform
respective tasks. In other words enter new modelling paradigms.
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Inverse Problems in Finance: calibration

Local stochastic volatility models

In stochastic local volatility (SLV) models the price process (St)t≥0 of one
asset follows an SDE

dSt = StL(t,St)αtdWt ,

where

I αt is a stochastic process,

I L(t, s) is the so called leverage or local volatiliy function,

I W is the driving Brownian motion.

The function L is the crucial part in this model. It should allow to perfectly
calibrate the implied volatility surface seen in the market.

Given an implied volatility the leverage function has to satisfy

L2(t, s) =
σ2

Dupire(t, x)

E[α2
t |St = s]

.

This is an implicit equation for L since the leverage function is needed for
the computation of E[α2

t |St = s].
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Inverse Problems in Finance: calibration

Existing methods

The implicit equation for L can be solved via McKean-Vlasov techniques.
The existing calibration techniques can be roughly distinguished into:

Monte Carlo techniques based on particle methdos for
McKean-Vlasov equations:

I P. Henry-Labordère (2009): “Calibration of Local Stochastic Volatility
Models: A Monte-Carlo Approach”

I J. Guyon and P. Henry-Labordère (2011): “The Smile Calibration
Problem Solved”

PDE techniques based on non-linear Fokker-Planck equations for
McKean-Vlasov equations:

I Y. Tian, Z. Zhu, G. Lee, F. Klebaner, and K. Hamza (2015):
“Calibrating and Pricing with a Stochastic-Local Volatility Model”.

inverse problem techniques for PDEs:

I Y Saporito, X. Yang, J. Zubelli (2017): “The Calibration of
Stochastic-Local Volatility Models - An Inverse Problem Perspective”40 / 48



Inverse Problems in Finance: calibration

Deep Calibration

Choose the parameters of a usual stochastic volatility model.

Define some grid 0 = t0 < t1 · · · < tn = T . Parametrize the leverage
function L(t, s) via a family of neural networks, i.e.

L(t, s) = F i+1(s) t ∈ [ti , ti+1), i ∈ {0, . . . , n − 1},
where for every i ∈ {1, . . . , n}, F i ∈ NNM,1,1.

Parametrize hedging strategies δ (with respect to hedging
instruments) by neural networks

We denote the weights of all the L-networks by θL and of the hedging
networks by θδ.

Fix θL and learn to hedge by changing θδ, i.e. minimize a risk
functional of payoff minus market price minus hedge P&L.

Fix θδ and learn θL to price correctly, i.e. minimize the expectation of
payoff minus market price minus hedge.
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Inverse Problems in Finance: calibration

Data and Objectives

Consider several call options on the underlying S parametrized by τj
corresponding e.g. to different strikes and maturities.

Fix θL and determine the weights θδ of all of the hedging networks

argminθδ

J∑
j=1

wjE
[
u((STj

− Kj)+ − (δ(θδ, τj) • S)Tj
− πmkt(τj))

]
,

where

I S denote the prices of the underlying depending on θL,

I πmkt denote the market prices of the respective calls,

I wj are some product specific weights (e.g. vega weighting).

I u is a function assessing risk of the position.

the expectation operator is calculated along Nδ trajectories by MC.
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Inverse Problems in Finance: calibration

Data and Objectives

Fix next θδ and determine the weights θL of all of the L networks

argminθL

J∑
j=1

wj

(
E
[
(STj
− Kj)+ − (δ(θδ, τj) • S)Tj

− πmkt(τj)
])2

,

The expectation operator is calculated along NL trajectories, which
can be chosen due to strong variance reducation, extraordinarily small.
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Inverse Problems in Finance: calibration

Two important remarks

standard BS hedges are in many cases excellent, hence learning θL is
often not necessary and does not need to be very precise to do the
variance reduction job.

the variance reduction through hedging is tremendous, i.e. NL only
lies in the thousands.
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Inverse Problems in Finance: calibration

Example: SABR stochastic local vol model

In the SABR SLV model the price process (St)t≥0 satisfies

dSt = StL(t, St)αtdWt ,

dαt = ναtdBt ,

where B and W are correlated Browian motions with
d〈Bt ,Wt〉t = ρdt and ν is the vol of vol.

where ν, ρ, α0 are some fixed parameters.

For the “data” we use some 60 prices at maturities
T = 0.1, 0.25, 0.5, 1.0 generated by some leverage function.
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Inverse Problems in Finance: calibration

Implementation

done in Tensorflow with ADAM optimizer.

hedging strategies are initialized around the BS hedge.

goal: re-construct the leverage function (stopping criterion: implied
vol error less than 0.001)

see results at https://arxiv.org/abs/2005.02505.

46 / 48

https://arxiv.org/abs/2005.02505
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Consistent Recalibration models

There are models of Heath-Jarrow-Morton type where the drift is of
complicated nature and only implicitly given, some of those models are
consistent recalibration models, see results at
https://arxiv.org/abs/2006.09455.
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