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Introduction

Goal of this talk is ...

@ to present the paradigm of reservoir computing and connect it to
rNNs and signature representations.

(joint works with Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva,
Martin Larsson, and Juan-Pablo Ortega)
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Introduction

Goal of this talk is ...

@ to present the paradigm of reservoir computing and connect it to
rNNs and signature representations.

@ to apply random projection techniques to construct true reservoirs
and prove related generalization results.

@ to highlight on the role of randomness in learning procedures and to
provide some explainations via signature techniques, random
projections and time series techniques.

(joint works with Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva,
Martin Larsson, and Juan-Pablo Ortega)
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CODE

We consider differential equations of the form

dYe =Y _ Vi(Yo)du, Yo=y € E
i

to construction evolutions in state space E (could be a manifold of finite
or infinite dimension) depending on local characteristics, initial value
y € E and the control u.

If the map y — Y7 is considered CODEs are an exciting model for
feedforward neural networks, residual networks, etc (see joint work with
Christa Cuchiero and Martin Larsson).
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CODEs: control as input

For this talk we fix y € E and consider

u+— W Evols(y)

and train the readout and/or the vector fields.

Does this also correspond to classes of networks? Yes: these are
continuous time versions of rNNs, LSTMs, etc.

It can be used for time series, predictions, etc.
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Reservoir Computing (RC)

... We aim to learn an input-output map on a high- or infinite dimensional
input state space. Consider the input as well as the output dynamic, e.g. a
time series. An example: learn a given evolution on state space E:

Paradigm of Reservoir computing (Herbert Jager, Lyudmila,
Grigoryeva, Wolfgang Maas, Juan-Pablo Ortega, et al.)

Split the input-output map into a generic part of generalized rNN-type
(the reservoir), which is not trained and a readout part, which is trained.

Often the readout is chosen linear and the reservoir has random features.
The reservoir is usually a numerically very tractable dynamical system.
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Applications of RC

@ Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.
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Applications of RC

@ Often reservoirs can be realized physically, whence ultrafast
evaluations are possible. Only the readout map W has to be trained.

@ One can learn dynamic phenomena without knowing the specific
characteristics.

@ It works unreasonably well with generalization tasks.
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An instance of RC are CODEs/RDEs

Consider a controlled differential equation

d
dYe =Y Vi(Yo)dul, Yo=y € E
i=1

for some smooth vector fields V; : E - TE, i=1,...,d and d
independent (Stratonovich) Brownian motions u', or finite variation
continuous controls, or a rough path. This describes a controlled dynamics
on E.

We want to learn the dynamics, i.e. the map

Obviously a complicated, non-linear map, ...
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We introduce some notation for this purpose:
Definition

Let V : E — E be a smooth vector field, and let f : E — R be a smooth
function, then we call

Vf(x) = df(x) e V(x)

the transport operator associated to V/, which maps smooth functions to
smooth functions and determines V' uniquely.
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Theorem

Let Evol be a smooth evolution operator on a convenient manifold E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d

d Evols ¢(x) = Y Vi(Evols +(x))du(t)
i=1

then for any smooth function f : E — R, and every x € E

f (Evols(x)) =

M d ) ]
=>. > Vfl---v,-kf(x)/ du(t1) -+~ du'(t,)+

k=0 iy,...,u=1 s<t; <<t <t
T R/w(S, t, f)
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with remainder term

RM(57 t7 f) ==
d | |
- Z / \/io \/ikf(EVO|57tO(X))dUIO(tO)"'dulk(tM)
00y upy=1 s<t1 <--<ty41<t

holds true for all times s < t and every natural number M > 0.

A lot of work has been done to understand the analysis, algebra and
geometry of this expansion (Kua-Tsai Chen, Gerard Ben-Arous, Terry
Lyons). It is a starting point of rough path analysis (Terry Lyons, Peter
Friz, etc).
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Definition

Consider the free algebra Ay of formal series generated by d
non-commutative indeterminates ey, ..., eg (actually a Hopf Alebra). A
typical element a € Ay is written as

00 d
a= E E al'l...l'kefl e el'k )

k=0 i,...,ix=1

sums and products are defined in the natural way. We consider the
complete locally convex topology making all projections a — aj;. i,
continuous on Ay, hence a convenient vector space.
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Definition
We define on Ay smooth vector fields

a—> ae;

fori=1,...,d.
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Theorem

Let u be a smooth control, then the controlled differential equation

d

dSigs,t(a) = Z Sigs,t(a)efdui(t)v Sigs,s(a) =a (1)

i=1

has a unique smooth evolution operator, called signature of u and denoted
by Sig, given by

Sig, (2) =23 Z / du (1) - du™ () e - - €, - (2)

k=0 i1,...,up=1 <t <<t <t

Actually Sig(e) takes values in a Lie group G and any element of G can be
reached up to arbitrary order of accuracy by such evolutions starting at e.
Additionally the restriction of linear maps on G is an algebra.
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Theorem (Signature is a reservoir)

Let Evol be a smooth evolution operator on a convenient vector space E
which satisfies (again the time derivative is taken with respect to the
forward variable t) a controlled ordinary differential equation

d Evols ¢ Z Vi(Evolse(x))du'(t).

Then for any smooth (test) function f : E — R and for every M > 0 there
is a time-homogenous linear W = W(VA, ..., Vg, f, M, x) from AQ/’ to the
real numbers R such that

f (Evols,¢(x)) = W (mm(Sigs (1)) + O((t — S)M+1)

for s < t.
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Signature as reservoir

@ This explains that any solution can be represented — up to a linear
readout — by a universal reservoir, namely signature.
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Signature as reservoir

@ This explains that any solution can be represented — up to a linear
readout — by a universal reservoir, namely signature.

@ This is used in many instances of provable machine learning by, e.g.,
groups in Oxford (Harald Oberhauser, Terry Lyons, etc), and also ...

@ ... at JP Morgan, in particular great recent work on 'Nonparametric
pricing and hedging of exotic derivatives’ by Terry Lyons, Sina Nejad
and Imanol Perez Arribas.

@ in contrast to reservoir computing: signature is high dimensional
(i.e. infinite dimensional) and a precisely defined, non-random object.

@ Can we approximate signature by a lower dimensional random object
with similar properties?
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It is the assertion of the Johnson-Lindenstrauss (JL) Lemma that for every
0 <e<1an N point set Q in some arbitrary (scalar product) space H,
can be embedded into a space R¥, where k = g?zliig in an almost

isometric manner, i.e. there is a linear map f : H — RX such that

(1 —e)vi — vl < [If(v1) = F()]? < X+ €)1 — vo?

for all vi,w € Q. It is remarkable that f can be chosen randomly from a
set of linear projection maps and the choice satisfies the desired
requirements with high probability.

The result is due to concentration of measure results in high dimensional
spaces and has been discovered in the eighties, for some details see below.
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Theorem (Cuchiero, Gonon, Grigoryeva, Ortega, Teichmann (2019))

Let u be a smooth control and f the previously constructed JL map
associated to an N point set Q of norm one. We denote by r-Sig the
smooth evolution of

d
dZe =Y f(F(Z)en)du'(t), Zo = F(1)
i=1

a controlled differential equation on R¥, whose solution we call
randomized signature r-Sig. If N is large enough, r-Sig compresses the
information of Sig.
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r-Sig is a random dynamical system

It is fascinating that we can actually calculate approximately the vector
fields which determine the dynamics of r-Sig, i.e.

y = (£ (y)ei)
foreach i=1,...,d for y € Rk,

Theorem

For M — oo the linear vector fields

y = f(f(y)ei)

fori=1,...,d, are built from matrices on R¥ with asymptotically
normally distributed, (almost) independent entries.
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Randomness matters

Consider

d
dYe =Y Vi(Yo)du'(t), Yo € E
i=1

where we observe one trajectory on [0, T| and do not know the
characteristics.
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Randomized Signature

A random localized signature

@ there is a set of hyper-parameters € ©, and a dimension M.

@ depending on 6 choose randomly matrices Aj, ..., Ay on RM as well
as shifts B1, ..., Bq such that maximal non-integrability holds on a
starting point x € RM.

@ one can tune the hyper-parameters § € © and dimension M such that

d
dXe = o(AiXe + Bi)du'(t), Xo = x
i=1

locally (in time, as well as space) approximates CODE Y via a linear
readout W up to arbitrary precision. o is a sigmoid function.
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An alternative perspective

Instead of applying the JL Lemma directly on Ay we could construct
faithful representations and evaluate them. Consider a manifold M and
Vi, ..., Vy vector fields on M such that the map

e,-r—>\/,-

from the Lie algebra g C Ay to the Lie algebra of vector fields does not
have a kernel, in other words there are no non-trivial relations among Lie
brackets of the vector fields Vi, ..., Vy. Then the algebra of (formal)
differential operators generated by Vi,..., V4 and Ay are isomorphic.
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An alternative perspective

Furthermore the solution of the transport equation

dfy(x Zwt

and signature have the same expressive power. Notice that fi(x) = f(X})
where

dX; = Zv (Xe)du'(t), Xo = x

forx e M, f € C>®(M).
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An alternative perspective

This yields an alternative perspective to understanding reservoirs
constructed by generic vector fields: consider random vector fields, such
that they are generic, i.e. without non-trivial relations, consider random
smooth functions on M and randomly chosen points x € M, then the
vector (fz(x))o<t<T of paths approximates signature up to arbitrary
precision. This construction can be fully parallelized and does only depend
on a low dimensional evaluation of the above CODE

d
dXe = ) Vi(Xe)du'(t), Xo = x
i=1

for x € M and f € C®(M).
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An example from Finance: learn the dynamics of SP500

We assume that a traded quantify (we neglect interest rates here) follows
an unknown high-dimensional Ito diffusion

d
dYe = V(Yi)dt + > Vi(Yi)dB].
i=1
No arbitrage theory suggests that there is actually an equivalent measure

change on Wiener space such that Y is a local martingale, i.e. there exists
a market price of risk (which is of course not observable path wise).
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An example from Finance: learn the dynamics of SP500

Still we are able to write

d
dYe = Vi(Ye)dM],
i=1

where M is a Brownian motion with drift. Under mild assumptions on the
vector fields we are able to reconstruct M up to orthogonal
transformations from Y in a pathwise manner, i.e. we have M and Y at
hand. Then we can learn the still unknown dynamics of Y via RC via
regression. With an estimator for the market price of risk, the calibrated
model can be used for predictions and pricing.
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