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Defining features of reservoir systems Input/Output systems

Input/Output systems

Definition

Let VZ ⊂ ZT and VY ⊂ YT be two subsets of the spaces of sequences ZT and YT
with values in the sets Z and Y, respectively, indexed by the elements in T ⊂ R. An
Input/Output (IO) system is a map U : VZ ⊂ ZT −→ VY ⊂ YT , where Z is called
the input space, Y is the output space, and T ⊂ R is the temporal index.

We take T as a discrete set and adopt discrete-time point of view.

If T is a compact subset of R, we say that we are in a finite-time setup. IO systems for
which T is semi-infinite towards −∞ (T = Z−,Z,R−,R) will be generically referred to
as filters, while when T is semi-infinite exclusively towards +∞ (T = Z+,R+) we will
talk about controlled dynamical systems. Our work takes place for discrete-time filters.
IO systems that are not finite-memory will be referred to as infinite-memory. We work
with a rich class of infinite-memory systems called fading memory, which is of much
relevance in the modeling of many phenomena and for which recent inputs are more
relevant than those far in the past. We shall see that infinite-memory filters in that class
can be uniformly approximated by finite-memory ones.

Lyudmila Grigoryeva ( University of Konstanz, Germany )Reservoir Computing for Forecasting Vienna, 2020 6



Defining features of reservoir systems Input/Output systems

Example. A linear IO system
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Defining features of reservoir systems Filters and functionals

Filters and functionals

Filters U : Vz ⊂ (Rd)Z −→ Vy ⊂ (Rm)Z and functionals H : (Rd)Z −→ Rm:

Causal filter: for any two elements z1, z2 ∈ (Rd)Z that satisfy that z1
τ = z2

τ for all
τ ≤ t, for a given t ∈ Z−, we have that U(z1)t = U(z2)t .

Time-invariant filter: for any τ ∈ Z define the time delay operator
Tτ : (Rd)Z −→ (Rd)Z by Tτ (z)t := zt−τ , for any t ∈ Z. The subset V ⊂ (Rd)Z−

is called time-invariant when Tτ (V ) = V , for all τ ∈ Z. U is TI when Vz and Vy

are TI and Tτ ◦ U = U ◦ Tτ , for all τ ∈ Z.

Bijection between causal time-invariant filters and functionals on Vz− := PZ−(Vz)
associated to each other:

U −→ HU(z) := U(ze)0, for any z ∈ Vz−

H −→ UH(z)t := H((PZ− ◦ T−t)(z)), for any t ∈ Z

where PZ− is the natural projection. It is easy to verify that:

HUH = H, for any functional H : Vz− −→ Rm,

UHU = U, for any causal TI filter U : Vz −→ (Rm)Z.

Let H1,H2 : Vz− −→ Rm, λ ∈ R, then UH1+λH2 (z) = UH1 (z) + λUH2 (z), for any
z ∈ Vz− (the same for functionals)
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Defining features of reservoir systems Filters and functionals

Discrete-time inputs and outputs

Sequence spaces `p−(Rd ) :=
{

z ∈ (Rd )Z− | ‖z‖p <∞
}

for 1 ≤ p <∞

‖z‖p :=

∑
t∈Z−

‖zt‖p
1/p

(1)

for p =∞
‖z‖∞ := sup

t∈Z−
{‖zt‖} (2)

The pair (`p−(Rd ), ‖·‖p), 1 ≤ p <∞ forms a separable Banach space.

Weighted sequence spaces `p,w− (Rd ) :=
{

z ∈ (Rd )Z− | ‖z‖p,w <∞
}

, where the weighted

p-norms in (Rd )Z− associated to some weighting sequence w : N −→ (0, 1] (strictly

decreasing, limit 0, w0 = 1) are given by

for 1 ≤ p <∞

‖z‖p,w :=

∑
t∈Z−

‖zt‖p w−t

1/p

(3)

p =∞
‖z‖∞,w := sup

t∈Z−
{‖zt‖w−t} (4)
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Defining features of reservoir systems Filters and functionals

Decay ratios

The decay ratio Dw and the inverse decay ratio Lw of w :

Dw := sup
t∈N

{
wt+1

wt

}
and Lw := sup

t∈N

{
wt

wt+1

}
. (5)

Notice that 0 < wt+1/wt < 1, for all t ∈ N, and
1 < w0/w1 ≤ supt∈N {wt/wt+1} = Lw . Consequently:

1 < Lw ≤ ∞ and analogously, 0 < Dw ≤ 1.

Provide a geometric bound for (di/con)vergence speed of w and
w−1 := (1/wt)t∈N, resp.

Proposition (Properties of the decay ratios)

Let w be a weighting sequence.

(i) For any t ∈ N, wt ≤ Dt
w and 1/wt ≤ Ltw .

(ii) If Dw < 1, then
∑

t∈N wt ≤ 1
1−Dw

.

(iii) LwDw ≥ 1.
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Defining features of reservoir systems Filters and functionals

Example. Decay ratios
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Defining features of reservoir systems The Fading Memory Property (FMP)

The fading memory property

We want filters for which the inputs in the far past do not count.

We encode the fading memory property (FMP) as a continuity property:

Definition

We say that CTI filter U : Vd ⊂ `w−(Rd)→ Vm ⊂ `w−(Rm) has the fading
memory property (FMP) w.r.t. w if U : (Vd , ‖.‖w ) −→ (Vm, ‖.‖w ) is
continuous, that is for any z ∈ Vd , any ε > 0 there exists δ(ε, z) > 0 such that

‖z̄− z‖w < δ(ε, z) =⇒ ‖U(z̄)− U(z)‖w < ε, for any z̄ ∈ Vd .

Relations: finite memory =⇒ FMP, continuity 6=⇒ FMP (peak-hold
filter), continuity of functional 6=⇒ continuity of the associated filter, FMP
functional 6=⇒ filter is FMP, FMP/continuous filter =⇒ FMP/continuous
functional

Convenient property: unique steady-state [BC85], or input forgetting, or
uniform FMP (uniform continuity w.r.t. topologies induced by w -norms in
Vd , Vm).

Lyudmila Grigoryeva ( University of Konstanz, Germany )Reservoir Computing for Forecasting Vienna, 2020 12



Defining features of reservoir systems The Fading Memory Property (FMP)

The following result provides sufficient conditions for the inheritance of the fading
memory property and the continuity from functionals to their corresponding filters.

Proposition (Inheritance)

Let w be a weighting sequence and let H : Vd ⊂ `w−(Rd) −→ Rm be a functional
that has the fading memory property with respect to w and is additionally
Lipschitz continuous with constant cH . Suppose that Vd contains a sequence z0

such that UH(z0) ∈ `w−(Rm).
Suppose additionally that one of the two following conditions hold

(i) Rw := sups,t∈N{wtws

wt+s
} <∞,

(ii) Lw := (L−tw )t∈Z−
∈ `w−(R).

Then UH : Vd ⊂ `w−(Rd) −→ `w−(Rm) also has the fading memory property, it is
Lipschitz, and RwcH (in case (i) holds) or ‖Lw‖wcH (in case (ii) is satisfied),
respectively, is a Lipschitz constant of UH . The same conclusion holds for
continuous functionals H : Vd ⊂ `∞− (Rd) −→ Rm where the conditions (i) or (ii)
are not needed.
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Defining features of reservoir systems The Fading Memory Property (FMP)

In the following statement, for any u ∈ (Rd)Z− and any z ∈ (Rd)N
+

, the symbol
uz1

t ∈ (Rd)Z− , t ∈ N+, denotes the concatenation of the vector u with the
truncated vector z1

t := (z1, . . . , zt) obtained out of z.

Theorem ( FMP functionals forget inputs)

Let w be a weighting sequence such that Dw < 1 and let

U : Vd ⊂ (`w−(Rd), ‖·‖w ) −→ Vm ⊂ (`w−(Rm), ‖·‖w )

be a CTI uniform FMP filter and let HU : Vd −→ Rm be the corresponding
functional. Then for any u, v ∈ Vd and for any z ∈ (Rd)N

+

lim
t→∞

∥∥HU(uz1
t )− HU(vz1

t )
∥∥ = 0. (6)

Additionally, if Vd is a bounded set in `w−(Rd), then there exists a monotonously
decreasing sequence wU with zero limit such that for any u, v ∈ Vd and
z ∈ (Rd)N

+

that satisfies (6) it holds that∥∥HU(uz1
t )− HU(vz1

t )
∥∥ ≤ wU

t , for any t ∈ Z+. (7)
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Defining features of reservoir systems The Fading Memory Property (FMP)

Choice of setup for results in this session

Consider uniformly bounded families of sequences, that is, subsets of
(Rd)Z− of the form

KM :=
{

z ∈ (Rd)Z− | ‖zt‖ ≤ M for all t ∈ Z−
}
, for some M > 0.

(8)
One has that

KM = B‖·‖∞(0,M) ⊂ `∞− (Rd) ⊂ `w−(Rd) ⊂ (Rd)Z− ,

for any M > 0 and any weighting sequence w .

Remark

Advantage: the relative topologies induced on the sets of type KM by both
the product topology in (Rd)Z− and the norm topology of(
`w−(Rd), ‖ · ‖w

)
coincide, for any weighting sequence w.
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Defining features of reservoir systems The Fading Memory Property (FMP)

Advantages

FMP =⇒ uniform FMP (due to the fact that
(KM , ‖·‖w ) ⊂ (`w−(Rd), ‖·‖w ) is a compact, complete, and convex).

functional H : KM −→ Rm with FMP w.r.t. some w =⇒ FMP w.r.t.
any other w

filter UH associated to a FMP functional H : KM −→ B‖·‖(0, L) has

FMP (notice that there exists L > 0 s.t. H(KM) ⊂ B‖·‖(0, L))

filter U : KM −→ `w−(Rm) with FMP w.r.t. some w =⇒ FMP w.r.t.
any other w
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Defining features of reservoir systems The Fading Memory Property (FMP)

Spaces of filters and functionals

Consider the vector spaces FFMP
KM

and HFMP
KM

formed by the FMP filters and
functionals of the form U : KM −→ `w−(Rm) and H : KM −→ Rm for some
weighting sequence w , respectively. These spaces can be made into
normed by

|||U|||∞,w := sup
z∈KM

{‖U(z)‖w} and |||H|||∞ := sup
z∈KM

{‖H(z)‖} .

The compactness of KM implies that these two norms are finite.

In the presence of uniformly bounded inputs, the normed spaces(
FFMP
KM

, |||·|||∞,w
)

and
(
HFMP

KM
, |||·|||∞

)
made of filters and functionals,

respectively, are isometrically isomorphic.
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Defining features of reservoir systems The Echo State Property (ESP)

State space systems

Z input space, X state space, Y output space

(F , h) reservoir system

F : X × Z −→ X state map

h : X −→ Y readout map

Sequences z ∈ ZZ, y ∈ YZ , and x ∈ X Z satisfy the state-space
equations associated to (F , h), whenever, for any t ∈ Z, it holds that{

xt = F (xt−1, zt),

yt = h(xt),
(9)

where the first equation is called the state equation and the second one
is called the observation equation.
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Defining features of reservoir systems The Echo State Property (ESP)

Is this reasonable? Synchronization

Consider an invertible dynamical system on the manifold M defined by
φ ∈ Diff1(M) and let ω ∈ C 1(M,Rd) be an observation map. Denote:

yt+1 = φ(yt) and zt = ω(yt).

Consider now the state-space system driven by the dynamical system
observations

xt+1 = F (xt , zt+1).

The state-space system is likely to produce a representation for the
dynamical system when there exists a generalized synchronization, that
is, a map H ∈ C 1(M,RN), such that

xt = H (yt) , for all t.
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Defining features of reservoir systems The Echo State Property (ESP)

Synchronization Theorem

Definition (System flow)

Consider the system defined by F : RN × Rd −→ RN . The associated
system flow Ft : RN × (Rd)t −→ RN is the system that maps any initial
condition x0 ∈ RN and input sequence Zt := {z1, . . . , zt} to the value
Ft(x0,Zt) ∈ RN obtained by applying the state-equation t-times, with
initial condition x0 ∈ and input Zt

Theorem ([KP96, HOY97])

A unique generalized synchronization exists if and only if for any
x0, x0 ∈ RN and any y0 ∈M

lim
t→∞

∥∥Ft(x0,Z
y0
t )−Ft(x0,Z

y0
t )
∥∥ = 0,

with Zy0
t :=

{
ω(φ(y0)), ω(φ2(y0)), . . . , ω(φt(y0))

}
.
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Defining features of reservoir systems The Echo State Property (ESP)

The hypothesis of the theorem implies that this definition does not
depend on x0.

It is a consequence called the state forgetting property of a
continuity feature that will be at the center of many or our
developments: the fading memory property.

The synchronization map H may be ”wild” enough to change the
attractor information dimension of the response with respect to the
driving dynamical system [HOY97].

We shall device reservoir systems that yield, in the spirit of Takens’
Theorem, C 1 synchronization maps.
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Defining features of reservoir systems The Echo State Property (ESP)

Remark

Finding state-space representations for input/output systems is related to
the so called realization problem in systems and control theory.
State-space representations of input/output systems are sometimes
referred to as internal representations because they involve the use of
internal, latent, or state variables.

These latent variables are sometimes just mathematical instruments or, in
other occasions, represent non observable parts of a system whose values
can be partially inferred out of observed values; this is the goal of Kalman
filter-related techniques [DK12, Sär13]. In contrast with the internal
representations, filters are referred to as the external representation of
an input/output system.

Remark

The state-space representations of an input/output system have the
advantage sf being recursively computable and provide simultaneously a
model and an algorithm.

Remark

Not every time invariant causal filter admits a finite dimensional internal
representation. For example the fractional ARFIMA models by [Hos81]
have been shown not to have a finite dimensional state-space
representation in [CPO98]. The reverse implication, that is, when a
state-space system determines a filter is the subject of the following
section.
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Defining features of reservoir systems The Echo State Property (ESP)

Examples: Linear state space system
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Defining features of reservoir systems The Echo State Property (ESP)

Examples: Time-invariant finite-memory filters

Let U : (Rd)Z− −→ (Rm)Z− be the time-invariant filter determined by the
map h : (Rd)τ −→ Rm, τ ∈ N+, that is,

U(z)t = h(zt−τ+1, . . . , zt).

This filter can be equivalently written as a linear state-space system of the
type (??) with a nonlinear readout via

A =

(
Od(τ−1),d Id(τ−1)

Od ,d Od ,d(τ−1)

)
and C =

(
Od(τ−1),d

Id

)
(10)

and using h as the readout. When h is polynomial, the family made of
state-space systems of this type has universal approximation properties in
the category of filters with the fading memory property. This will show
that any fading memory filter can be uniformly approximated by a
finite-memory one.
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Defining features of reservoir systems The Echo State Property (ESP)

Examples: Echo State Network (ESN)
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Defining features of reservoir systems The Echo State Property (ESP)

State-affine systems (SAS)

Take two polynomials p(z) ∈MN,N [z ] and q(z) ∈MN,1[z ] on the variable
z with matrix coefficients, that is

p(z) := A0 + zA1 + z2A2 + · · ·+ zn1An1 ,

q(z) := B0 + zB1 + z2B2 + · · ·+ zn2Bn2

The non-homogeneous state-affine system (SAS) associated to p, q
and W is the reservoir system determined by the state-space
transformation: {

xt = p(zt)xt−1 + q(zt),

yt = W>xt .

(11)

(12)
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Defining features of reservoir systems The Echo State Property (ESP)

Examples: State-Affine Systems (SAS)

Let MN,M [z] be the space of polynomials on z ∈ Rd with matrix coefficients in MN,M ,
that is, the set of elements p of the form

p =
∑
α∈Vp

zαAα,

with Vp ⊂ Nd a finite subset and Aα ∈ MN,M the matrix coefficients. A state-affine
system is given by {

xt = p(zt)xt−1 + q(zt),

yt = W xt ,
(13)

with p ∈ MN,N [z], q ∈ MN,d [z] and W ∈ Mm,N . Note that the linear system is a
particular case of this specification that can be obtained by taking as p a polynomial of
degree zero and q a polynomial of degree one.
Nilkn [z] ⊂ Mn[z] is the set of nilpotent Mn-valued polynomials on z of index k, that is,
p(z) ∈ Nilkn [z] whenever k is the smallest natural number for which p(z)k = 0, for all
z ∈ R. Nil[z] is the set of matrix-valued nilpotent polynomials on z of any order and
any index.
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Defining features of reservoir systems The Echo State Property (ESP)

Echo state property (ESP)

The link between state-space systems and input/output systems is given by the
following property.

Definition

Let VZ ⊂ ZZ, VX ⊂ X Z, and VY ⊂ YZ be subsets of the input, state, and output
spaces, respectively.

Let F be a state-space map. We say that F has the (VZ ,VX )-echo state
property (ESP) whenever for each z ∈ VZ there is a unique x ∈ VX such that the
first equation in (9) holds.

Let (F , h) be a state-space system. We say that (F , h) has the (VZ ,VY)-echo
state property (ESP) whenever for each z ∈ VZ there is a unique y ∈ VY such
that the equations (9) hold.

Remark

If F has the (VZ ,VX ) echo state property then (F , h) has the (VZ ,VY)-echo state
property with

VY :=
{

y ∈ YZ|yt = h(xt), t ∈ Z, (xt)t∈Z ∈ VX
}
. (14)

The converse situation does not hold in general.
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Defining features of reservoir systems The Echo State Property (ESP)

Reservoir filters

The reservoir system {
xt = F (xt−1, zt),

yt = h(xt),

(15)

(16)

determines a filter when the following existence and uniqueness property
holds (echo state property [Jae10, YJK12]): for each z ∈ (Dd)Z there
exists a unique x ∈ (DN)Z such that for each t ∈ Z, the relation (15)
holds.

The state filter UF : (Dd)Z −→ (DN)Z is determined by
UF (z)t := xt ∈ DN

The reservoir filter UF
h : (Dd)Z −→ RZ is determined by the entire

reservoir system, that is, UF
h (z)t := h

(
UF (z)t

)
= yt .

The filters UF and UF
h are causal by construction and are necessarily

time-invariant [GO18b]. We can hence associate to UF
h a reservoir

functional HF
h : (Dd)Z− −→ R determined by HF

h := HUF
h

.
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Defining features of reservoir systems The Echo State Property (ESP)

ESP and FMP for state contracting maps

Under what conditions state systems induced by state maps that are
contracting on the state variable have the echo state property and the
fading memory properties?
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Defining features of reservoir systems The Echo State Property (ESP)

Theorem (The ESP and FMP for contractive state systems)

Let d ,N ∈ N, Dd ⊂ Rd , DN ⊂ RN and let F : DN × Dd −→ DN be a continuous
reservoir map. Assume that F is a r-contraction on the first entry. Let w be a weighting
sequence such that Lw <∞ and let Vd ⊂ (Dd)Z− ∩ `w−(Rd) be a time invariant set.
Suppose that one of the following hypotheses holds:

(i) DN is a compact subset of RN

(ii) VN := (DN)Z− ∩ `w−(RN) is a complete subset of
(
`w−(RN), ‖·‖w

)
, F is

Lipschitz continuous, and there exists a solution (x0, z0) ∈ VN × Vd for
the system associated to F .

In both cases, if
rLw < 1, (17)

then the system associated to F has the (Vd ,VN)-ESP and FMP. This statement also
holds true under the hypotheses in part (ii) if `w−(RN) is replaced by `∞− (RN), in which
case condition (17) is not needed and the resulting filter is continuous.

The FMP of the filter associated to a reservoir map propagates to the FMP of the filter
of the full reservoir system if the readout map is continuous.
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Defining features of reservoir systems The Echo State Property (ESP)

Corollary

Let M, L > 0, let KM ⊂
(
Rd
)Z− and KL ⊂

(
RN
)Z− be subsets of uniformly

bounded sequences, and let F : B‖·‖(0, L)× B‖·‖(0,M) −→ B‖·‖(0, L) be a
continuous state map. Assume, additionally, that F is a contraction on the first
entry with constant 0 < r < 1. Then, the state system associated to F has the
echo state property. Moreover, this system has a unique causal and time-invariant
filter UF : KM −→ KL associated that has the fading memory property with
respect to any weighting sequence w.
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Defining features of reservoir systems The Echo State Property (ESP)

Examples: Linear State Space Systems

In this case the condition (17) reads
|||A|||2Lw < 1 (18)

and the reservoir filter UF
h : `w−(Rd ) −→ `w−(Rm) is given by

UF
h (z)t = h

 ∞∑
j=0

AjCzt−j

 . (19)

The statement (19) is proved by showing, first, that for any z ∈ `w−(Rd ) the sequence (Sn)n∈N+

with Sn ∈ (RN)Z− given by Sn
t :=

∑n
j=0 A

jCzt−j is a Cauchy sequence in `w−(RN). Indeed, for

any n ∈ N+

‖Sn‖w = sup
t∈Z−

{‖Sn
t ‖w−t} ≤ sup

t∈Z−


 n∑

j=0

|||A|||j2|||C |||2
∥∥zt−j

∥∥ wt−j

wt−j

w−t


≤

n∑
j=0

|||A|||j2|||C |||2L
j
w ‖z‖w = |||C |||2 ‖z‖w

1−
(
|||A|||2Lw

)n+1

1− |||A|||2Lw
<∞,

which proves that Sn ∈ `w−(RN).
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Example: LSS systems continued

Analogously, it is easy to see that for any n,m ∈ N+, n < m

‖Sn − Sm‖w ≤ |||C |||2 ‖z‖w
m∑

j=n+1

(
|||A|||2Lw

)j ≤ |||C |||2 ‖z‖w ∞∑
j=n+1

(
|||A|||2Lw

)j
= |||C |||2 ‖z‖w

(
|||A|||2Lw

)n+1

1− |||A|||2Lw
,

which tends to zero as n→∞ proving that (Sn)n∈N+ is a Cauchy sequence in `w−(RN).

As `w−(RN) is a Banach space, (Sn)n∈N+ converges to an element S ∈ `w−(RN) given by

St :=
∑∞

j=0 A
jCzt−j , t ∈ Z−.

Given that the terms of this sequence satisfy the recursion St = ASt−1 + Czt and that
Theorem (slide 31) guarantees that F has the

(
`w−(Rd), `w−(RN)

)
-echo-state property, we

necessarily have that

UF (z)t =
∞∑
j=0

AjCzt−j , t ∈ Z−

and therefore (19) follows.

Lyudmila Grigoryeva ( University of Konstanz, Germany )Reservoir Computing for Forecasting Vienna, 2020 34



Defining features of reservoir systems The Echo State Property (ESP)

Echo State Networks

Suppose that σ : R −→ [−1, 1], σ is non-decreasing, limx→∞ σ(x) = 1,
limx→−∞ σ(x) = −1, and suppose that Lσ := supx∈R {|σ′(x)|} <∞. The
condition (17) reads

|||A|||2LσLw < 1.

No explicit expression for the filter UF
w : `w−(Rd) −→ `w−(Rm) is available.
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SAS

Let the reservoir map is given by F (x, z) = p(z)x + q(z) with

p(z) ∈ MN,N [z] or TrigN,N [z],

q(z) ∈ MN,d [z] or TrigN,d [z].

Suppose that F : RN × Dd −→ RN with Dd bounded, so that

Mp := sup
z∈Dd

{|||p(z)|||} <∞, Mq := sup
z∈Dd

{|||q(z)|||} <∞.

The condition (17) reads in this case MpLw < 1 and the reservoir filter
UF
W : `w (Rd ) ∩ (Dd )Z− −→ `w−(Rm) is given by

UF
W (z)t = W

 ∞∑
j=0

p(zt)p(zt−1) · · · p(zt−j+1)q(zt−j )

 . (20)

The proof that the filter (20) indeed satisfies the state-space system in (13) is carried out by
mimicking the case of linear reservoir systems and by noticing that since Dd is bounded and
q : Dd −→ MN,d is polynomial, then it is necessarily Lipschitz with a constant Lq > 0.
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The goal - prove that some of the families we introduced are universal
approximants.
It the deterministic part we work in the fading memory category with
uniformly bounded inputs.
In that case, universality is shown by proving the density of the relevant
families with respect to the topology induced by the norm in the spaces
described earlier.
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Universality results in the deterministic setup

Tools: The Stone-Weierstrass theorem for polynomial subalgebras of
real-valued functions defined on compact metric spaces.

Approach: One needs to prove that filters form polynomial algebras.
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Theorem (Universality of families of state-space filters )

Let KM ⊂ (Rd )Z− , I an index set, and let

RI := {HFi
hi

: KM −→ Rm |hi ∈ C0(DNi
, Rm), Fi : DNi

× B‖·‖(0,M)→ DNi
, i ∈ I , Ni ∈ N+,

DNi
⊂ RNi ,H

Fi
hi

continuous, Fi has the (KM , `
∞(RNi ))-ESP}.

Let A(RI ) be the algebra generated by RI using the Hadamard product � introduced as

H
Fi
hi
� H

Fj
hj

:= (H
Fi
hi ,1
· HFj

hj ,1
, . . . ,H

Fi
hi ,m
· HFj

hj ,m
).

Then:

(i) A(RI ) consists of continuous state-space functionals.

(ii) If A(RI ) contains the constant functionals and separates the points in KM then it is dense
in (HFMP

KM
, |||·|||∞) that is,

A(RI ) = HFMP
KM

.

Hence, given any functional H with the fading memory property and any ε > 0 there
exists a state-space functional HF

h ∈ A(RI ) such that∣∣∣∣∣∣∣∣∣H − HF
h

∣∣∣∣∣∣∣∣∣
∞
< ε.

Moreover, there exists a finite set of indices {i1, . . . , ir} ⊂ I and a polynomial

p : RNi1 × · · · × RNir −→ Rm such that h := p(hi1 , . . . , hir ) and F := (Fi1 , . . . ,Fir ).
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Proof
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Corollary

(State-space systems with polynomial readouts are universal) Let M > 0, m ∈ N+,
and KM ⊂ (Rd)Z, and let

R :=
{
HF

h : KM → Rm | F : DN × B‖·‖(0,M)→ DN , DN ⊂ RN , h ∈ Pol(RN ,Rm)
}
.

Then,
A(R) = R and R = HFMP

KM
. (21)
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Corollary

(Universality of linear systems with polynomial readouts) Let M > 0, m ∈ N+,
0 < ε < 1 arbitrary but fixed. Let KM ⊂ (Rd)Z and define the family

L :=
{
HA,C

h : KM → Rm | A ∈ MN , |||A|||2 < 1− ε, C ∈ MN,d , h ∈ Pol(RN ,Rm)
}
.

Then, L is dense in HFMP
KM

. The same result holds, if we replace L by the families N and
D that contain only nilpotent and diagonal connectivity matrices A, respectively.
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Corollary

Universality of the state affine system family Let M > 0,m,R ∈ N+, arbitrary but
fixed. Define:

S :=
{
Hp,q

W : KM −→ Rm|p ∈ SNilkN [z], q ∈ MN,d [z],N ∈ N
}

Then S in dense in HFMP
KM

.
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Theorem

Universality of the echo state family with invertible activation
functions Let M > 0 and ε > 0 arbitrary but fixed and let
U : KM −→ (Rm)Z− be a causal and time invariant filter that has the
fading memory property. Then, there exists a echo state network{

xt = σ(Axt−1 + Czt + ζ)

yt = W xt

with invertible activation σ : R −→ R that has the echo state property and
the fading memory property and whose associated filter
UESN : KM −→ (Rm)Z− satisfies that

|||U − UESN|||∞ < ε.
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