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Universal reservoir system: Echo State Network (ESN)

Universal reservoir system: Echo State Network (ESN)

Echo State Network is given by:

The

x¢ = 0 (Ax¢—1 +7Cz¢ + sC) (1)
{Yt = WTx (2)
reservoir map F : RV x RY — RN is prescribed by:
the activation function o : RV — RV
reservoir matrix A € My
input mask C € My ¢4
input scaling v € Rt
input shift ¢ € RV

input shift scaling s € R™

Architecture choice: number of neurons N, the law for the elements of A, C, (.
Only the reservoir readout is W € My, is subject to training.
In some cases hyperparameters 0 := (p(A),, s) need to be tuned.
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Architecture choice for ESNs

Approaches to the choice of ESN architecture

@ hyperparameters @ given by the solution of the ERM optimization problem
constructed using some loss function of interest or randomly sampled

@ A is taken as a sparse matrix with the connectivity degree often set up as
¢ = min{10/N, 1}

@ Ae My and C € My 4 (v € RV) are randomly drawn (Gaussian, uniform).
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Training of ESNs: Estimating the linear readout W

Consider
e initial reservoir state xg € RN, T length of the total training sample
@ Z € My 1 observation matrix of the training input
e Y € M, 7 observation matrix of the training target (for the
forecasting task the target process y = T_1(z))
@ X € My, 1 contains the T states of the ESN

Then the estimation of the linear readout (up to bias term) of the ESN is
implemented via Tikhonov-regularized LS regression (ERM w.r.t. squared
loss), namely:

W= argmin{HY ~ WX+ AHWH?F} ., AeRT
WGMN’m

with the closed-form solution
W = (XXT + Aly) XY ™.
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Forecasting with ESN (deterministic setup)

One step ahead:

—

x; = 0 (Ax¢—1 + vCz; + s¢)
2t+1 = WTXt,
which is called in-sample (training) for t = 1,..., T and out-of-sample (testing)

fort=T+1,..., T + T™ with T** the length of the testing sample. The
forecast testing error is given by

T4 Tt
A~ 1

Rr(W) = T tst Z L(2:,2:)

t=T+1

h-steps ahead:

—

Xt =0 (Axt,1 + ’7C2t + SC)
2441 = WTXt

where t=1,..., T+ h h< T™ and 2, =z, fort=1,...
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Applications to stochastic processes

Stochastic setup

See [GO20] for the universal approximation properties of the ESNs and [GGO19]
for their generalization error bounds for weakly dependent processes (non-sharp).
Empirical question: how difficult is to find ESN which outperforms benchmark
competitors in the forecasting exercise.
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Applications to stochastic processes

Application to stochastic processes

Task: forecasting realized (co)variances of intradaily (multiple) asset returns

@ Application of interest for financial mathematicians and financial
econometricians

Realized (co)variances exhibit the stylized features of financial time series
along with the features of long memory processes

Existing parametric models suffer from the curse of dimensionality when
applied to high number of financial assets

@ Only short sample of historical observations is available (poor statistical
inference guarantees)

@ Time series show signs of extreme behaviour and regime changing (crisis
events)
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Applications to stochastic processes

Realized variance of financial asset returns

80 T

50

40t

30

20

Realized variance (using subsampled 5 mins returns)

Mk

0 !
3/01/00 2/01/02 2/01/04 2/01/06 2/01/08  2/01/10 2/01/12  2/01/14  2/01/16

Lyudmila Grigoryeva

;.ll..n A ld“ A

uUu }U.

Dates

Reservoir Computing for Forecasting

71218

Vienna, 2020

9



Signs of long memory behavior

Realized volatility time series exhibit long memory behavior features:

(i) Slow decay in lag k in sample auto-correlations

n—|k|

R 1

pk) = - Z (zt — Zn)(Ze4 (k| — Zn) With Z, = Zzt
t=1

The decay of p(k) is hyperbolic with a rate k™%, 0 < @ <1 = non-summability.
(i) Var(Z,) — 0 at a slower rate than n~*. Define

Nm _ B n
537 = 1/(nm - 1) Zl (z(ifl)m,im - Zn) ’ zt m = ZZH—‘“ nm = ’Vm—‘ .
Plot S2, against log m where m is the number of observations in the block.
(iii) R/S statistic [?]: Let y; = >_, z and define the adjusted range
R(t, k) := DX {yeri — (Yr+k ye)} — Og"gk{}’m (Yt+k -y}
Let Zox = k' 3171, | z and define S(t, k) := \/k—l St 1 (2 — Zek)?. The ratio
R(t,k)

e k) is called the R/S statistic. As k — oo, log E[R/S] ~ a+ Hlog k with H > 1

for short-range processes R/S behaves as Vk, that is as k - o0, log R/S slope
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Standard tools available

Autocorrelation of log realized variance

Sample Autocorrelation Function of log h:
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Standard tools available

Partial autocorrelation of log realized variance

Sample Partial Autocorrelation Function of log ht
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Long memory processes

Standard characterisation of memory for time series process, which are second-order
stationary, builds upon properties of autocovariance functions v, (h), h € Z or spectral
density functions

o]

f(w) = % Z vz(h) exp(—ihw),w € [—m, 7]. 3)

h=—o0

Definition ([Ber94])

We say that a second-order stationary process z:,t € Z
@ has long memory, if as [w| = 0 f(w) = ocoor >, ,7:(h) = o0
@ has short memory, if as |w| =0 f(w) = cor0< >, 7.(h) <oo
@ shows antipersistence, if as [w| =0 f(w) = 0or >, ,v:(h) =0.

Using the equiv. characterization of processes [Ber94], one can define memory of a given
process using the behavior of v,(h), h € Z and use in practice heuristics given above.
Definition
Let x; be a stationary process. x; is called a process with long memory, long range
dependence or strong dependence if there exists a constant ¢, > 0 such that

lim ~.(h) =c,h™®, with o < 1. 4)

|h|— o0
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ARFIMA process

An ARFIMA(p, d, q) (Granger and Joyeux [1980], Hosking [1981]) process is
given by
S(L)(1— L) (z: —v) = O(L)er, €~ IID(0,0?)

with

S(L)=1— 1L — ol — ... — p,LP
O(L)=14601L+ 0L+ ...+ 6047

and the fractional difference operator (1 — L)9 defined by

& T(k—d)Lk
-0 =3 s (5)

z; is invertible and stationary if all roots of ® and © are outside the unit circle
and |d| < 0.5. A stationary ARFIMA(p, d, q) process with d € (0, 1) is a long
memory process. It is easy to verify that it that case, the condition (4) holds with
a=2d-1
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HAR [Cor09]

The daily return process {r:}+cz is given by

re=0%e, e NO,1), tez,

(6)

with 05") the daily integrated volatility. Idea: the hierarchical model for ol using

a cascade of models for the partial latent volatilities at lower frequencies.
Introduce the daily partial realized volatilities 59 such that 519 =

t t

t

agd), the

weekly 7 and monthly ™ latent partial volatilities. Assume they follow for all
t € Z hold
G\ = o™ 4 MRV L&

~(w)

Ottt = ol +¢(W)th +’Y )5 [~(m ]+~(w)

61:+1w7

g t+1m
a:gi)ld = a(d) + ¢(d)RVt(d) + V(W) [N(W)

Ee[o: 1] +e t+1d’

()
(8)
(9)

Where RV(d) is the observed daily realized volatility, RVt(W) ZJ o RV, d)d and

RV =5 Z d “(m) ~(w) and € ~(d)

t Jd, €t1imr Ctiw: €:414 are contemp. and serially

mdependent zero mean innovations, which are left tail truncated.
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HAR

The hierarchical approach yields

oDy =a+ B‘“’)RVt(d) + W’ Vi) ﬁ(’" RV + &y teZ.  (10)

plm = ,y(d)v(vv)d,(m)_ Wlth

U£+)1d = RV(+)1d + €g+)1d’ (11)
results in HAR model

RV = a+ BORV 4 IRV 4 BMRVI™ Lery, tez,  (12)
with €;41 = E(ti)ld — ﬁfi)ld with the temporal increments taken in the daily time
scale.

HAR is a AR(22) model parametrized in a parsimonious way.

Other versions of HAR model [AK16, AHO19]; produce superior quality forecasts
in the calm market periods; suffer from losses of performance in periods of high
volatile market behavior; remain very strong competitors in the univariate and
multivariate setups [SSKM18].
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Pitfalls and tools

transforms preserving positivity (positive definiteness) of
(co)volatilities - Box-Cox

choice of a particular loss function and regularization at the time of
training which leads to good performance in terms of other evaluation
criteria used in the literature

residual (block) bootstrapping
changing the architecture as a response to regime switching

random ESNs with the Hedge boosting algorithm

Lyudmila Grigoryeva Reservoir Computing for Forecasting Vienna, 2020
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Standard tools available

Box-Cox

Consider the original time series y;, t € {1,..., T} of realized variances. Since y;
is a non-negative process and its realizations often exhibit non-Gaussian behavior,
one applies the Box-Cox transformation, namely for all t € {1,..., T}

A
yi —1
A#£0
Zt:fBC(yt;)\): A 70,
Iny, A=0

(13)

and whose inverse we denote by gpc(z, \) = fB_Cl(zt7 A) = y;. Based on z,
te{l,..., T} foreach he{l,..., hyax} construct the forecast

2tvn := E[ze1n|Ft]. The ultimate goal of the forecaster however is to obtain the
forecast in the original representation y; ., := E[y;n|F:]. The naive approach of
obtaining a forecast as evaluation of the inverse function ggc (24, A) for convex
functions by Jensen's inequality leads to under-predictions as

goc(E[zern|Ft], A) < Elgac(ze+n; A)|Ft] and may result in incorrect rankings of
models.
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Forecast adjustment

Adjustment in [Tayl7] based on the conditional expectation of a Taylor series
expansion of ggc(zi1n; A) at zp. Denote by “E:)h\t' k € N, the k-th conditional

central moments of z;,p that is pgh‘t = E[z4.n|Ft] and

N(tht =E[zf, | F:] - ('ut+)h|t) for k > 1 and the full adjustment expression is
given by

Elgsc(zern A Fe] = 8o (tiesnie A) (1 + 3 88 (e /\)uikﬁht> (14)
k=1

where
1-XMk-1)
(k) ‘2 =
g ; —
(/"Lt+h|t ) k(1+A/Jlt+h‘t)
In particular, in the case of the logarithmic transformation (A = 0 in (13)) the full
adjustment has the form

Ve =~ el <1 + Z Pla t+h|t> (15)
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Doob decomposition implications for forecasting

Theorem (Doob decomposition)

Let (Q, F,P) be a probability space and let (F;)ten be a filtration of A. Let
z = (z:)ren+ be an adapted stochastic process with E[|z:|]] < oo for all t € N*.
Then there exists a martingale M = (M;)icn+ and an integrable and predictable

process A = (At)ren starting at Ay = 0, such that z; = Ay + M, for all t € NT.
This decomposition is almost surely unique.

For all t € N*
t

At = Z (E[ZJ|J—'.J—1] - zj—l) aAl = O (16)
=2
t
M, =z + Z (zi — E[zj|Fj-1]) My =7 (17)
=

are used to verify the decomposition. Additionally, one needs to check that
E[(M; — M¢_1) | Ft—1] = 0 almost surely, which follows from (17). Consider now
————

€t
the implications of using Doob’s decompsition for the forecasting exercise.

Reservoir Computing for Forecasting Vienna, 2020 20



Forecasting with ESN

Doob decomposition for forecasting

Let z = Zyyain = (Zo, Z1,. .. aztrain—l)T € RMwin, Let T = Tirain and let

2t = E[z¢|Feo1],t € {2,..., T} with 2; = z; be the forecast provided by
ESN previously trained on the 1-step ahead forecasting task. Additionally
define €; := z; — Z;, the in sample residuals produced by the trained ESN.
In the end of the training phase, at t = T, one has:

T T T
Ar=) (Zr—z1)andMr=z+) (zz—2)=2n+) &
t=2 t=2 t=2
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Forecasting with ESN

Implementation

Let N, be the number of bootstrap replications. We construct N, random subsamples of

residuals at the time of training, each of length hmax, namely
EO) = (gy),eg),...,e‘,{m)ax) J=1{1,... N}
@ h=1:

) = A+ MY i =1,..., N, with
T
/2\T+1 = Z(ft —ze—1) +(2r11 — z7)

t=2

At

T
Msj—ll =2z1+ Z(Zt —Z2)+ (2741 — 2111) = M1 + e(lj)
—_——

t=2

not available €7,
Mt

with 2741 provided by the ESN.

Lyudmila Grigoryeva
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Forecasting with ESN
., Ny, with

@ h=2:
D, =AY, + MY,
T+2 +2 T+27J
A({—)ﬁ = Arg+ (2142 — ZT+1)
~(j)

M$)+2 = M$)+1 +&

@ until h = hmax:
2 b = A + ML i = > Nr, with
AD = Arihpt + (2T b — ZT 1)
ML) e = M1 8L,
Finally construct forecasts as
, ;.

yhmax, J =1, ...

zesn _
H»h*N t+h’ - a"'

~() sesn
2, =+

~() __ aesn ()
2T hoe = ET+hmae €
Vienna, 2020
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bl
Forecasting with ESNs

h-step ahead forecast of realized (co)variances is constructed as follows:

@ Fix the number N, of replications in the bootstrapping exercise.

@ Randomly draw N, h-long subsamples {ej(l), .. .,e;(h)}_ " y of
j€

residuals from the available ESN residuals {e>,...,€T.,}.

e Follow according to the ESN model, for each t € { Test,..., T — h}
let z; .= RVf, then construct s-step forecasts, s =1,...,h, each N,
times

Xj;+s—1 =0 (ij+s 2t VC(ZJt+s 1T € s )) + C) )

RV t+s:_zjt+s_ijt+s o JE{l,... N}, se{l,...,h}

) —d
@ Finally construct each s-step forecast as RV, ¢ := N ZJ 1 RVt+s
r
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Forecasting with ESNs
Experts Advice (the Hedge algorithm [FS97], [FS99])

Setup:

@ K is the number of ESNs-experts

o T is the length of the sample for forecasting with {1,..., T}

@ consider h-step forecasts hgjlh, te{l,....,T—H}, he{l,...,H},
produced by each jth expert, j € {1,...,K}

e performance of each expert (accuracy of the produced forecast) is
assessed with the help of the loss function ¢ : R — R™ of a player's
choice

o fix the initial weights wfl := (w{"" ... w{f9"7 st.

Zszl Wéj)’h =1 and the updating rate n € R™

Lyudmila Grigoryeva Reservoir Computing for Forecasting Vienna, 2020
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Forecasting with ESN Forecasting with ESNs

The Hedge algorithm consists of the following steps:

@ Let t = to, the initial weights are used w! = w/!

@ Produce h-step ahead forecasts h; j = (hgl)’h7 ey th)’h)T. The player's

forecast is constructed as /A7£’ =wlh/,
Q Lett=t+1

© The true observation o; is revealed; one can assess performance of each

1-step forecast of the jth expert is assessed; one gets (Egl_)’ll, e ,ng)l’l) with

AL = 0(or, H921). Compute the player's loss (2 | = ¢(o¢, L)
© Update only the weights with h =1 via the rule
Wt(’)’1 = Wt(’_)’l1 ~exp(—77€9_)’11 ,J€{1,---,K}. Normalize these weights and

; Cw? — w2 H_ wH
leave the other weights unchanged : wf =w;_;,--- ,w/ =w; ;.

@ Continue steps (2)-(5), each time more true values get revealed and
eventually whenever t > ty + H all the weights get updates. Continue until
t=T—h.
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~ Empirical study BEEE
Datasets

@ Univariate historical data of the 5-min subsampled realized variances of the major
equity indices in the period 04/01/2000 - 07/12/2018:
e S&P500
e FTSE 100
o NIKKEI225

@ Multivariate time series of historically observed realized covariance matrix
processes:

o 4 assets:
CTL (CenturyLink), MKR (Merck), JPM (JPMorgan), PFE (Pfizer)
Period: 10/09,/2003-06/03/2018

o 6 assets:
AXP (American Express), C (Citigroup), GS (Goldman Sachs), BLK
(BlackRock), AA (Alcoa), GE (General Electric)
Period: 04/01/2001-16,/04 /2018

e 29 constituents of the DJIA index
Period: 04/01/2001-16,/04/2018

e 128 the most liquid S&P500 index assets-components

Period: O4‘Oli2001—16/04/2018
Lyudmila Grigoryeva Reservoir Computing for Forecasting Vienna, 2020
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Empirical study Forecast performance evaluation

Forecast evaluation

Consider (in)consistent loss functions [Patll], [LRV13] to evaluate the in-sample
fit and the out-of-sample forecasting ability of the models:
@ Univariate case:
o Mean absolute error (MAE), ¢;-norm based L;(02, h?) := |02 — h?|
e Mean square error (MSE), Euclidean dist. based
2
Lo(0?, h2) = (07 — h?)
o QLIK error based on QLIK loss Louik (07, h7) = log 7% —|—

@ Multivariate case. Let o} := vech (X;), h; := vech (H;) € RN :
e Mean absolute error (MAE), £1-norm based
L1(Te He) = S50 (o)) — (Y)i]
o Mean square error (MSE), Euclidean dist. based
Le(TeHy) = (¢ — hY) (o — hY)
o QLIK error based on QLIK loss:
Louik(Xe, He) == log det Hy + trace { H,"'Z,}
e Frobenius norm based:
Le(Ee, He) = ||T¢ — He|lp = trace {(zt —H) (% - Ht)}

Lyudmila Grigoryeva Reservoir Computing for Forecasting Vienna, 2020
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Forecast performance evaluation
Forecasting S&P500 RV (T = 3000, h = 1)

3F -
—— ESNs-experts advice
——True series
2+ ——HAR model by Corsi (2009) -
——HAR model by Bauer & Vorkink (2011)
1 \ =
ol | Ui | | \ | 1
|
iR 1 L |
r
‘ N ” T
- l it \ \i f J ‘ !
\v 1
I } H N l\ ‘ ‘ ‘ ‘ \ | |
: H |
' | ‘ \| (| ” “
-3 i
-4 L
17/12/11 15/12/13 14/12/15

Lyudmila Grigoryeva Reservoir Computing for Forecasting Vienna, 2020 29



recast performance evaluation

Forecasting S&P500 RV (T = 3000, h = 30)

3 |
——True series
ol —— ESNs-experts advice
——HAR model by Corsi (2009)
——HAR model by Bauer & Vorkink (2011)
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Forecast performance evaluation
Forecasting of FTSE realized variance ( Tess = 3000)

25—
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HAR model by Bauer & Vorkink (2011)

—HAR model by Corsi (2009)
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Forecast performance evaluation
Forecasting of FTSE realized variance ( Tess = 4500)
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247) mean square forecasting error
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Forecast performance evaluation
Forecasting of S&P500 realized variance ( T.s; = 4500)

2 3
o

x

S

€]

25

173

2

o

o

5

o 2

)

&

Q

s

5

2"

D

8

o

s

= 1

<

N

o

n

% —Echo State Network
?Exo,s —HAR model by Bauer & Vorkink (2011) |
I+ —HAR model by Corsi (2009)
I3

=1

[ 1 L L 1 L

5 10 15 20 25 30
Forecasting horizon, h

Lyudmila Grigoryeva Reservoir Computing for Forecasting Vienna, 2020 33



Forecast performance evaluation
Forecasting of NIKKEI realized variance ( Tos; = 4500)
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Forecast performance evaluation
Forecasting of NIKKEI realized variance ( Tos; = 4500)
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Forecast performance evaluation
Realized correlation forecasting

5 Realized Volatility (JPM stock)

—— Observed time series of realized volatilities for JPM stock
1-step realized volatility forecasts produced by HAR

Realized Volatility (JPM stock)

——Observed time series of realized volatilities for JPM stock
1-step realized volatility forecasts produced by ESN
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Figures taken from the master thesis of Larissa Zimmermann.
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Empirical study Forecast performance evaluation

Reallzed Correlatlon (MRK and PFE stocks)
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Empirical study Forecast performance evaluation

Empirical results

@ ESN outperforms state-of-the-art models for realized volatility in
forecasting tasks

@ ESN trained on a given training dataset of one given index is showed
to perform well in forecasting of a number of other indices
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