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Universal reservoir system: Echo State Network (ESN)

Universal reservoir system: Echo State Network (ESN)

Echo State Network is given by:{
xt = σ (Axt−1 + γCzt + sζ)

yt = W>xt

(1)

(2)

The reservoir map F : RN × Rd → RN is prescribed by:

the activation function σ : RN −→ RN

reservoir matrix A ∈MN

input mask C ∈MN,d

input scaling γ ∈ R+

input shift ζ ∈ RN

input shift scaling s ∈ R+

Architecture choice: number of neurons N, the law for the elements of A, C , ζ.
Only the reservoir readout is W ∈MN,m is subject to training.
In some cases hyperparameters θ := (ρ(A), γ, s) need to be tuned.
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Universal reservoir system: Echo State Network (ESN)

Architecture choice for ESNs

Approaches to the choice of ESN architecture

hyperparameters θ given by the solution of the ERM optimization problem
constructed using some loss function of interest or randomly sampled

A is taken as a sparse matrix with the connectivity degree often set up as
c = min{10/N, 1}

A ∈MN and C ∈MN,d (γ ∈ RN) are randomly drawn (Gaussian, uniform).
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Universal reservoir system: Echo State Network (ESN)

Training of ESNs: Estimating the linear readout W

Consider

initial reservoir state x0 ∈ RN , T length of the total training sample

Z ∈Md ,T observation matrix of the training input

Y ∈Mm,T observation matrix of the training target (for the
forecasting task the target process y = T−1(z))

X ∈MN,T contains the T states of the ESN

Then the estimation of the linear readout (up to bias term) of the ESN is
implemented via Tikhonov-regularized LS regression (ERM w.r.t. squared
loss), namely:

Ŵ = argmin
W∈MN,m

{
‖Y −W>X‖2

F + λ‖W ‖2
F

}
, λ ∈ R+,

with the closed-form solution

Ŵ = (XX> + λIN)−1XY>.
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Universal reservoir system: Echo State Network (ESN)

Forecasting with ESN (deterministic setup)

One step ahead: {
xt = σ (Axt−1 + γCzt + sζ)

ẑt+1 = Ŵ>xt ,

which is called in-sample (training) for t = 1, . . . ,T and out-of-sample (testing)
for t = T + 1, . . . ,T + T tst with T tst the length of the testing sample. The
forecast testing error is given by

R̂T (Ŵ ) =
1

T tst

T+T tst∑
t=T+1

L(ẑt , zt)

h-steps ahead: {
xt = σ (Axt−1 + γC ẑt + sζ)

ẑt+1 = Ŵ>xt

where t = 1, . . . ,T + h, h ≤ T tst , and ẑt = zt for t = 1, . . . ,T .
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Applications to stochastic processes

Stochastic setup

See [GO20] for the universal approximation properties of the ESNs and [GGO19]
for their generalization error bounds for weakly dependent processes (non-sharp).
Empirical question: how difficult is to find ESN which outperforms benchmark
competitors in the forecasting exercise.
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Applications to stochastic processes

Application to stochastic processes

Task: forecasting realized (co)variances of intradaily (multiple) asset returns

Application of interest for financial mathematicians and financial
econometricians

Realized (co)variances exhibit the stylized features of financial time series
along with the features of long memory processes

Existing parametric models suffer from the curse of dimensionality when
applied to high number of financial assets

Only short sample of historical observations is available (poor statistical
inference guarantees)

Time series show signs of extreme behaviour and regime changing (crisis
events)
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Applications to stochastic processes

Realized variance of financial asset returns
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Standard tools available

Signs of long memory behavior

Realized volatility time series exhibit long memory behavior features:

(i) Slow decay in lag k in sample auto-correlations

ρ̂(k) =
1

n

n−|k|∑
t=1

(zt − zn)(zt+|k| − zn) with zn =
n∑

t=1

zt .

The decay of ρ̂(k) is hyperbolic with a rate k−α, 0 < α < 1 =⇒ non-summability.

(ii) Var(zn)→ 0 at a slower rate than n−1. Define

S2
m = 1/(nm − 1)

nm∑
i=1

(
z (i−1)m,im − zn

)2
, z t,m =

1

m

m∑
j=1

zt+j , nm =
⌈ n
m

⌉
.

Plot S2
m against logm where m is the number of observations in the block.

(iii) R/S statistic [?]: Let yi =
∑j

i=1 zi and define the adjusted range

R(t, k) := max
0≤i≤k

{yt+i − yt −
i

k
(yt+k − yt)} − min

0≤i≤k
{yt+i − yt −

i

k
(yt+k − yt)}.

Let z t,k = k−1∑t+k
i=t+1 zi and define S(t, k) :=

√
k−1

∑t+k
i=t+1(zi − z t,k)2. The ratio

R(t,k)
S(t,k)

is called the R/S statistic. As k →∞, log E [R/S ] ≈ a + H log k with H > 1
2

for short-range processes R/S behaves as
√
k, that is as k →∞, logR/S slope
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Standard tools available

Autocorrelation of log realized variance
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Standard tools available

Partial autocorrelation of log realized variance
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Standard tools available

Long memory processes

Standard characterisation of memory for time series process, which are second-order
stationary, builds upon properties of autocovariance functions γz(h), h ∈ Z or spectral
density functions

fz(ω) =
1

2n

∞∑
h=−∞

γz(h) exp(−ihω), ω ∈ [−π, π]. (3)

Definition ([Ber94])

We say that a second-order stationary process zt , t ∈ Z
has long memory, if as |ω| → 0 fz(ω)→∞ or

∑
h∈Z γz(h) =∞

has short memory, if as |ω| → 0 fz(ω)→ c or 0 <
∑

h∈Z γz(h) <∞
shows antipersistence, if as |ω| → 0 fz(ω)→ 0 or

∑
h∈Z γz(h) = 0.

Using the equiv. characterization of processes [Ber94], one can define memory of a given
process using the behavior of γz(h), h ∈ Z and use in practice heuristics given above.

Definition

Let xt be a stationary process. xt is called a process with long memory, long range
dependence or strong dependence if there exists a constant cγ > 0 such that

lim
|h|→∞

γz(h) = cγh
−α, with α < 1. (4)
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Standard tools available

ARFIMA process

An ARFIMA(p, d , q) (Granger and Joyeux [1980], Hosking [1981]) process is
given by

Φ(L)(1− L)d(zt − ν) = Θ(L)εt , ε ∼ IID(0, σ2
ε )

with

Φ(L) = 1− ϕ1L− ϕ2L− . . .− ϕpL
p

Θ(L) = 1 + θ1L + θ2L + . . .+ θqL
q

and the fractional difference operator (1− L)d defined by

(1− L)d =
∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
(5)

zt is invertible and stationary if all roots of Φ and Θ are outside the unit circle
and |d | < 0.5. A stationary ARFIMA(p, d, q) process with d ∈ (0, 1

2 ) is a long
memory process. It is easy to verify that it that case, the condition (4) holds with
α = 2d − 1.
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Standard tools available

HAR [Cor09]

The daily return process {rt}t∈Z is given by

rt = σ
(d)
t εt , εt

IID∼ N(0, 1), t ∈ Z, (6)

with σ
(d)
t the daily integrated volatility. Idea: the hierarchical model for σ

(d)
t using

a cascade of models for the partial latent volatilities at lower frequencies.

Introduce the daily partial realized volatilities σ̃
(d)
t such that σ̃

(d)
t = σ

(d)
t , the

weekly σ̃
(w)
t and monthly σ̃

(m)
t latent partial volatilities. Assume they follow for all

t ∈ Z hold

σ̃
(m)
t+1m = α(m) + φ(m)RV

(m)
t + ε̃

(m)
t+1m, (7)

σ̃
(w)
t+1w = α(w) + φ(w)RV

(w)
t + γ(w)Et [σ̃

(m)
t+1m] + ε̃

(w)
t+1w , (8)

σ̃
(d)
t+1d = α(d) + φ(d)RV

(d)
t + γ(w)Et [σ̃

(w)
t+1w ] + ε̃

(d)
t+1d , (9)

where RV
(d)
t is the observed daily realized volatility, RV

(w)
t = 1

5

∑4
j=0 RV

(d)
t−jd and

RV
(m)
t = 1

22

∑21
j=0 RV

(d)
t−jd , ε̃

(m)
t+1m, ε̃

(w)
t+1w , and ε̃

(d)
t+1d are contemp. and serially

independent zero-mean innovations, which are left tail truncated.
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Standard tools available

HAR

The hierarchical approach yields

σ
(d)
t+1d = α + β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ε̃

(d)
t+1d , t ∈ Z, (10)

where α = α(d) + γ(d)α(w) + γ(d)γ(w)α(m), β(d) = φ(d), β(w) = γ(d)φ(w), and
β(m) = γ(d)γ(w)φ(m). With

σ
(d)
t+1d = RV

(d)
t+1d + ε

(d)
t+1d , (11)

results in HAR model

RV
(d)
t+1 = α + β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + εt+1, t ∈ Z, (12)

with εt+1 = ε̃
(d)
t+1d − ε

(d)
t+1d with the temporal increments taken in the daily time

scale.
HAR is a AR(22) model parametrized in a parsimonious way.
Other versions of HAR model [AK16, AHO19]; produce superior quality forecasts
in the calm market periods; suffer from losses of performance in periods of high
volatile market behavior; remain very strong competitors in the univariate and
multivariate setups [SSKM18].
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Standard tools available

Pitfalls and tools

transforms preserving positivity (positive definiteness) of
(co)volatilities - Box-Cox

choice of a particular loss function and regularization at the time of
training which leads to good performance in terms of other evaluation
criteria used in the literature

residual (block) bootstrapping

changing the architecture as a response to regime switching

random ESNs with the Hedge boosting algorithm
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Standard tools available

Box-Cox

Consider the original time series yt , t ∈ {1, . . . ,T} of realized variances. Since yt
is a non-negative process and its realizations often exhibit non-Gaussian behavior,
one applies the Box-Cox transformation, namely for all t ∈ {1, . . . ,T}

zt = fBC(yt ;λ) =


yλt − 1

λ
, λ 6= 0,

ln yt , λ = 0
(13)

and whose inverse we denote by gBC(zt , λ) = f −1
BC (zt , λ) = yt . Based on zt ,

t ∈ {1, . . . ,T} for each h ∈ {1, . . . , hmax} construct the forecast
ẑt+h := E[zt+h|Ft ]. The ultimate goal of the forecaster however is to obtain the
forecast in the original representation ŷt+h := E[yt+h|Ft ]. The näıve approach of
obtaining a forecast as evaluation of the inverse function gBC(ẑt+h, λ) for convex
functions by Jensen’s inequality leads to under-predictions as
gBC(E[zt+h|Ft ], λ) ≤ E[gBC(zt+h;λ)|Ft ] and may result in incorrect rankings of
models.
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Standard tools available

Forecast adjustment

Adjustment in [Tay17] based on the conditional expectation of a Taylor series

expansion of gBC(zt+h;λ) at zt+h. Denote by µ
(k)
t+h|t , k ∈ N, the k-th conditional

central moments of zt+h that is µ
(1)
t+h|t = E[zt+h|Ft ] and

µ
(k)
t+h|t = E[zkt+h|Ft ]− (µ

(1)
t+h|t)

k for k > 1 and the full adjustment expression is

given by

E[gBC(zt+h;λ)|Ft ] = gBC(µt+h|t ;λ)

(
1 +

∞∑
k=1

g (k)(µt+h|t ;λ)µ
(k)
t+h|t

)
(14)

where

g (k)(µt+h|t ;λ) =
1− λ(k − 1)

k(1 + λµt+h|t)
g (k−1)(µt+h|t ;λ), with g (0)(µt+h|t ;λ) = 0.

In particular, in the case of the logarithmic transformation (λ = 0 in (13)) the full
adjustment has the form

ŷt+h ≈ eµt+h|t

(
1 +

∞∑
k=1

1

k!
µ

(k)
t+h|t

)
(15)

and for power transforms with λ = 1/n with n ∈ N, it is given by

ŷt+h ≈
(

1 +
µt+h|t

n

)n1 +
n∑

k=1

(n − 1)!µ
(k)
t+h|t

k!(n − k)!nk−1
(

1 + 1
nµ

(k)
t+h|t

)
 .
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Standard tools available

Doob decomposition implications for forecasting

Theorem (Doob decomposition)

Let (Ω,F ,P) be a probability space and let (Ft)t∈N be a filtration of A. Let
z = (zt)t∈N+ be an adapted stochastic process with E [|zt |] <∞ for all t ∈ N+.
Then there exists a martingale M = (Mt)t∈N+ and an integrable and predictable
process A = (At)t∈N starting at A1 = 0, such that zt = At + Mt for all t ∈ N+.
This decomposition is almost surely unique.

For all t ∈ N+

At =
t∑

j=2

(E[zj |Fj−1]− zj−1) ,A1 = 0 (16)

Mt = z1 +
t∑

j=2

(zj − E[zj |Fj−1]) ,M1 = z1 (17)

are used to verify the decomposition. Additionally, one needs to check that
E [(Mt −Mt−1)︸ ︷︷ ︸

εt

|Ft−1] = 0 almost surely, which follows from (17). Consider now

the implications of using Doob’s decompsition for the forecasting exercise.
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Forecasting with ESN

Doob decomposition for forecasting

Let z = ztrain = (z0, z1, . . . , ztrain−1)T ∈ RTtrain . Let T = Ttrain and let
ẑt = E[zt |Ft−1], t ∈ {2, . . . ,T} with ẑ1 = z1 be the forecast provided by
ESN previously trained on the 1-step ahead forecasting task. Additionally
define ε̂t := zt − ẑt , the in sample residuals produced by the trained ESN.
In the end of the training phase, at t = T , one has:

AT =
T∑
t=2

(ẑt − zt−1) and MT = z1 +
T∑
t=2

(zt − ẑt) = z1 +
T∑
t=2

ε̂t
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Forecasting with ESN

Implementation

Let Nr be the number of bootstrap replications. We construct Nr random subsamples of
residuals at the time of training, each of length hmax, namely

Ê (j) =
(
ε̂

(j)
1 , ε̂

(j)
2 , . . . , ε̂

(j)
hmax

)
, j = {1, . . . ,Nr}.

h = 1:

z̃
(j)
T+1 = ÂT+1 + M̃

(j)
T+1, j = 1, . . . ,Nr ,with

ÂT+1 =
T∑
t=2

(ẑt − zt−1)︸ ︷︷ ︸
AT

+(ẑT+1 − zT )

M̃
(j)
T+1 = z1 +

T∑
t=2

(zt − ẑt)︸ ︷︷ ︸
MT

+ (zT+1 − ẑT+1)︸ ︷︷ ︸
not available ε̂T+1

=: MT + ε̂
(j)
1

with ẑT+1 provided by the ESN.
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Forecasting with ESN

h = 2:

z̃
(j)
T+2 = Ã

(j)
T+2 + M̃

(j)
T+2, j = 1, . . . ,Nr ,with

Ã
(j)
T+2 = ÂT+1 + (ẑT+2 − zT+1)

M̃
(j)
T+2 = M̃

(j)
T+1 + ε̂

(j)
2

until h = hmax:

z̃
(j)
T+hmax

= Ã
(j)
T+hmax

+ M̃
(j)
T+hmax

, j = 1, . . . ,Nr ,with

Ã
(j)
T+hmax

= ÂT+hmax−1 + (ẑT+hmax − zT+hmax−1)

M̃
(j)
T+hmax

= M̃
(j)
T+hmax−1 + ε̂

(j)
hmax

Finally construct forecasts as:

ẑesn
t+h =

1

Nr

Nr∑
j=1

z̃
(j)
t+h, h = 1, . . . , hmax, j = 1, . . . ,Nr .

z̃
(j)
T+1 = ẑesn

T+1 + ε̂
(j)
1

...

z̃
(j)
T+hmax

= ẑesn
T+hmax

+ ε̂
(j)
hmax
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Forecasting with ESN Forecasting with ESNs

Forecasting with ESNs

h-step ahead forecast of realized (co)variances is constructed as follows:

Fix the number Nr of replications in the bootstrapping exercise.

Randomly draw Nr h-long subsamples
{
ε
∗(1)
j , . . . , ε

∗(h)
j

}
j∈{1,...,Nr}

of

residuals from the available ESN residuals {ε̂2, . . . , ε̂Test}.
Follow according to the ESN model, for each t ∈ {Test , . . . ,T − h}
let zt := RVd

t , then construct s-step forecasts, s = 1, . . . , h, each Nr

times
xjt+s−1 = σ

(
Axjt+s−2 + γC (ẑjt+s−1 + ε

∗(s)
j ) + ζ

)
,

R̂V
d ,j

t+s := ẑjt+s = Ŵ xjt+s−1, j ∈ {1, . . . ,Nr} , s ∈ {1, . . . , h}

Finally construct each s-step forecast as R̂V
d

t+s :=
1

Nr

∑Nr
j=1 R̂V

d ,j

t+s
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Forecasting with ESN Forecasting with ESNs

Experts Advice (the Hedge algorithm [FS97], [FS99])

Setup:

K is the number of ESNs-experts

T is the length of the sample for forecasting with {1, . . . ,T}
consider h-step forecasts h

(j)
t+h, t ∈ {1, . . . ,T − H}, h ∈ {1, . . . ,H},

produced by each jth expert, j ∈ {1, . . . ,K}
performance of each expert (accuracy of the produced forecast) is
assessed with the help of the loss function ` : R −→ R+ of a player’s
choice

fix the initial weights wh
0 := (w

(1),h
0 , . . . ,w

(K),h
0 )> s.t.∑K

j=1 w
(j),h
0 = 1 and the updating rate η ∈ R+
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Forecasting with ESN Forecasting with ESNs

The Hedge algorithm consists of the following steps:

1 Let t = t0, the initial weights are used wh
t = wh

0

2 Produce h-step ahead forecasts ht,h = (h
(1),h
t , . . . , h

(K),h
t )>. The player’s

forecast is constructed as ĥht = wh
t h
>
t,h

3 Let t = t + 1

4 The true observation σt is revealed; one can assess performance of each

1-step forecast of the jth expert is assessed; one gets (`
(1),1
t−1 , . . . , `

(K),1
t−1 ) with

`
(j),1
t−1 := `(σt , h

(j),1
t−1 ). Compute the player’s loss `1

t−1 = `(σt , ĥ
1
t−1)

5 Update only the weights with h = 1 via the rule

w
(j),1
t := w

(j),1
t−1 · exp(−η`(j),1

t−1 ), j ∈ {1, · · · ,K}. Normalize these weights and

leave the other weights unchanged : w2
t = w2

t−1, · · · ,wH
t = wH

t−1.

6 Continue steps (2)-(5), each time more true values get revealed and
eventually whenever t ≥ t0 + H all the weights get updates. Continue until
t = T − h.
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Empirical study Data

Datasets

1 Univariate historical data of the 5-min subsampled realized variances of the major

equity indices in the period 04/01/2000 - 07/12/2018:

S&P500
FTSE 100
NIKKEI225

2 Multivariate time series of historically observed realized covariance matrix

processes:

4 assets:
CTL (CenturyLink), MKR (Merck), JPM (JPMorgan), PFE (Pfizer)
Period: 10/09/2003–06/03/2018
6 assets:
AXP (American Express), C (Citigroup), GS (Goldman Sachs), BLK
(BlackRock), AA (Alcoa), GE (General Electric)
Period: 04/01/2001–16/04/2018
29 constituents of the DJIA index
Period: 04/01/2001–16/04/2018
128 the most liquid S&P500 index assets-components
Period: 04/01/2001–16/04/2018
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Empirical study Forecast performance evaluation

Forecast evaluation

Consider (in)consistent loss functions [Pat11], [LRV13] to evaluate the in-sample
fit and the out-of-sample forecasting ability of the models:

Univariate case:

Mean absolute error (MAE), `1-norm based L1(σ2
t , h

2
t ) := |σ2

t − h2
t |

Mean square error (MSE), Euclidean dist. based

L2(σ2
t , h

2
t ) :=

(
σ2
t − h2

t

)2

QLIK error based on QLIK loss LQLIK (σ2
t , h

2
t ) := log

σ2
t

h2
t

+
σ2
t

ht

Multivariate case. Let σv
t := vech (Σt) ,hv

t := vech (Ht) ∈ RN∗ :

Mean absolute error (MAE), `1-norm based

L1(Σt ,Ht) :=
∑N∗

i=1 |(σv
t )i − (hv

t )i |
Mean square error (MSE), Euclidean dist. based
LE (Σt ,Ht) := (σv

t − hv
t )>(σv

t − hv
t )

QLIK error based on QLIK loss:
LQLIK (Σt ,Ht) := log detHt + trace

{
Ht
−1Σt

}
Frobenius norm based:
LF (Σt ,Ht) := ‖Σt − Ht‖F = trace

{
(Σt − Ht)

> (Σt − Ht)
}
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Empirical study Forecast performance evaluation

Forecasting S&P500 RV (Test = 3000, h = 1)
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Empirical study Forecast performance evaluation

Forecasting S&P500 RV (Test = 3000, h = 30)
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Empirical study Forecast performance evaluation

Forecasting of FTSE realized variance (Test = 3000)
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Empirical study Forecast performance evaluation

Forecasting of FTSE realized variance (Test = 4500)
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Empirical study Forecast performance evaluation

Forecasting of S&P500 realized variance (Test = 4500)
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Empirical study Forecast performance evaluation

Forecasting of NIKKEI realized variance (Test = 4500)
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Empirical study Forecast performance evaluation

Forecasting of NIKKEI realized variance (Test = 4500)
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Empirical study Forecast performance evaluation

Realized correlation forecasting

Figures taken from the master thesis of Larissa Zimmermann.
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Empirical study Forecast performance evaluation
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Empirical study Forecast performance evaluation

Empirical results

ESN outperforms state-of-the-art models for realized volatility in
forecasting tasks

ESN trained on a given training dataset of one given index is showed
to perform well in forecasting of a number of other indices
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