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Outline

◮ Sampling vs optimisation on Rd

◮ Mean-Field Langevin Dynamics - training of one hidden layer neural
network viewed as an optimisation problem over Wassersatin space,
[Hu et al., 2019b].

◮ Neural ODEs via Relaxed Optimal Control. A perspective on deep
recurrent neural networks, [Jabir et al., 2019].

◮ Gradient flows for (regularised) stochastic control problem,
[Šǐska and Szpruch, 2020].

◮ Robust pricing and hedging with neural SDEs, [Gierjatowicz et al., 2020].

◮ Unbiased approximation of parametric path dependent PDEs,
[Vidales et al., 2018].

3 / 50



Key messages of this mini course

◮ Training neural nets is a sampling problem

◮ Gradient flow view on training neural networks provides mathematical
framework to study machine learning

◮ Probabilistic numerical analysis provides quantitative bounds that do not
suffer from the curse of dimensionality

◮ Machine learning perspective leads to new algorithms and mathematical
tools for (stochastic) control problems and offers a fresh perspective on
classical quantitative finance problems.
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Success of Deep Learning

◮ Neural networks appeared in the 1943 seminal work by Warren McCulloch
and Walter Pitts inspired by certain functionalities of the brain aiming for
artificial intelligence (AI)

◮ Excellent performance (image and language recognition, classification
tasks, etc) due to
◮ architectural innovations (e.g. many layers, dropout, LSTMs)
◮ algorithmic innovations (e.g ADAM methods)
◮ vastly larger data sets
◮ Benchmark data sets (MNIST, ImageNet, CIFAR)
◮ GPUs, TPUs and cloud computing
◮ very efficient open source libraries (Tensorflow, Theano, Torch).

◮ “Imagenet classification with deep convolutional neural networks” by
Krizhevsky, Sutskever, Hinton, (2012) NIPS - 68613 citation as of
31-08-2020.

◮ “Grandmaster level in StarCraft II using multi-agent reinforcement
learning” by Vinyals, Babuschkin,...,David Silver, (2019) Nature.
Estimated cost of training the algorithm - $30m.

◮ So far deep learning is successful in a ’relatively’ stationary regime.
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Neural networks

i) an activation function ϕ : R → R; ϕ(z) = (ϕ(z1), . . . ,ϕ(zl))
⊤

ii) The space of parameters

Π = (Rl1×l0 × Rl1)× (Rl2×l1 × Rl2)× · · ·× (RlL×lL−1

× RlL) ,

iii) Defines a function RΨ : Rl0 → RlL given recursively, for x0 ∈ Rl0 , by

z0 ∈ Rl0 , by
!
zk = ϕlk (αkzk−1 + βk) , k = 1, . . . , L− 1 .

(RΨ)(z0) = αLzL−1 + βL
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Arnold-Kolmogorov theorem and Universal approximation

If an activation function ϕ is bounded, continuous and non-constant, then for
any compact set K ⊂ Rd the set

"
(RΨ) : Rd → R : (RΨ) given above

with L = 2 for some n ∈ N,α2
j ,β

1
j ∈ R,α1

j ∈ Rd , j = 1, . . . , n

#

is dense in the space of continuous functions from K to R. See e.g.
Hornik [Hornik, 1991],[Cybenko, 1989].

◮ Practical quantitative results are possible when working with additional
structural assumptions (e.g low-dimensional hypothesis)

◮ Some recent work [Schmidt-Hieber et al., 2020], [Ma et al., 2019]
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New era of overparameterized statistical models ?

From Belkin. et.al. [Belkin et al., 2018].

◮ Need for new theory to study generalisation error. Classical Vapnik
dimension and Rademacher complexity doesn’t help.

◮ Overparametrised models can be optimal in the high signal-to-noise ratio
regime Montanari et.al [Mei and Montanari, 2019]

◮ Implicit Regularisation [Heiss et al., 2019], [Neyshabur et al., 2017]
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Key Questions

i) Function approximation theory: the challenge is to derive non-asymptotic
results; expressiveness in terms of width and depth; network architecture
design: feed-forward, convolutional, LSTM, ResNet, Attention Networks...

ii) Generalisation error in particular in overparametrised regime.

iii) Non-convex optimisation and effect of noise in stochastic gradient
algorithms, in general non-convex optimisation problems are NP-hard;
links with the optimisation; lazy and mean-field regimes in
overparametrised setting

9 / 50



(Noisy) Gradient Descent

10 / 50



Optimisation on Rd

◮ Consider F : Rd → R

◮ Assume F is strongly convex with parameter m > 0 i.e ∀x , y and
α ∈ (0, 1) we have
◮

(x − y ,∇xF (x)−∇xF (y)) ≥ m |x − y |2

◮ equivalently

F (y) ≥ F (x) + (∇xF (x), y − x) +
m

2
|y − x |2

◮ equivalently

F (α+ (1− α)y) ≤ αF (x) + (1− α)F (y)−
1

2
mα(1− α)|x − y |2
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Gradient flow on Rd

◮ Classical gradient descent algorithm with fixed learning rata γ > 0

xn+1 = xn − γ(∇xF )(xn)

◮ Continuous view point aka gradient flow

dxt = −(∇xF )(xt)dt

◮ F is decreasing along gradient flow (xt)

dF (xt) = (∇xF )(xt)dxt = −|(∇xF )(xt)|2dt .

◮ Since F is strongly convex ∃!x! s.t F (x!) = minxF (x).
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Rate of convergence

◮ We can easily compute the rate of convergence

d(xt − x∗) = −((∇xF )(xt)− (∇xF )(x
!))dt

◮ Hence

d |xt − x∗|2 = −2(xt − x!, (∇xF )(xt)− (∇xF )(x
!))dt ≤ −2m|xt − x!|

◮ We have
|xt − x!|2 ≤ |x0 − x!|2e−2mt

◮ Exercise: Do a computation directly for discrete time dynamics. Need F
Lipschitz and the Lipschitz constant matters.

◮ If we drop the assumption that F is convex, gradient descent can only
converge to a local minimum.
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Noisy gradient descent Rd

◮ Consider noisy gradient descent with σ > 0

dXt = −(∇xF )(Xt)dt + σdWt

◮ A natural question: µt := L(Xt) → ? when t → ∞.

◮ PDE for the law. Let φ ∈ C 2(Rd)

d

dt
E[φ(Xt)] = E

$
−(∇F )(Xt) ·∇φ(Xt) +

σ2

2
∇2φ(Xt)

%
.

◮ Suppose that µt admits density µ(t, x)

d

dt

&

Rd

φ(x)µ(t, x)dx =

&

Rd

'
−(∇F )(x)∇φ(x) +

σ2

2
∇2φ(x)

(
µ(t, x)dx

=

&

Rd

'
div((∇F )(x)µ(t, x)) +

σ2

2
∇2µ(t, x)

(
φ(x)dx

◮ Since this holds for all φ, µ = µ(t, x) solves

∂tµ = div((∇F )µ) +
σ2

2
∆µ
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Gibbs measure

◮ Under mild conditions on ∇F , X is ergodic with invariant measure

π(dx) =
1

Z
e
− 2

σ2 F (x)dx Z =

&

Rd

e
−−2

σ2 F (x)
dx

◮ In other words for all X0, µt = L(Xt) converges weakly to π

◮ Indeed plugging in π into right-hand side of the PDE:

1

Z

&

Rd

'
−∇F (x)∇φ(x) +

σ2

2
∇2φ(x)

(
e
− 2

σ2 F (x)dx

=
1

Z

&

Rd

'
−∇F (x)∇φ(x) +

σ2

2
∇φ(x)

2

σ2
∇F (x)

(
e
− 2

σ2 F (x)dx = 0

=⇒ d

dt
E[φ(Xt)] = 0

◮ Hence π is a stationary solution to the PDE. Extra work needed to prove
that µt ⇒ π.
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Laplace method

◮
π(dx) =

1

Z
e
− 2

σ2 F (x)dx

◮ Consider δ > 0

π(F (X ) > minF + δ) =
1

Z

&
1{F (x)>min F+δ}e

− 2
σ2 F (x)dx

≤
)
1{F (x)>min F+δ}e

− 2
σ2 F (x)dx

)
1{F (x)≤min F+δ}e

− 2
σ2 F (x)dx

◮ F (x) ≤ minF + δ =⇒ 1

e−F (x) ≤ 1

e−(min F+δ)

π(F (x) > minF + δ) ≤
)
1{F (x)>min F+δ}e

− 2
σ2 (F (x)−(min F+δ))

dx)
1{F (x)≤min F+δ}dx

→ 0 as σ → 0

◮ As σ → 0 the π concentrates near minimiser of F

◮ No Convexity required!. See [Hwang, 1980].
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Differential Calculus on P(Rd)
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Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that V : P(Rd) → R is C1 if there exists a continuous map
δV
δm

: P(Rd)× Rd → R such that for any m,m′ ∈ P(Rd)

lim
s↘0

V ((1− s)m + sm′)− V (m)

s
=

&

Rd

δV

δm
(m, y)(m′ −m)(dy) .

◮ Note δV
δm

is defined up to normalising constant. We take
&

Rd

δV

δm
(m, y)m(dy) = 0

◮ Take λ ∈ (0, 1). Define mλ := m + λ(m′ −m) and note that

V (m′)− V (m) =

& 1

0

&

Rd

δV

δm
(mλ, y)(m′ −m)(dy)dλ

◮ Note that regularity of δV
δm

(m, y) in y may determine the metric (e.g total
variation or Wasserstein) in which V is Lipschitz.
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Intrinsic/Lions/Wasserstein derivative

Definition 2

If δV
δm

is C 1 in y the intrinsic derivative DmV : P(Rd)× Rd → Rd is defined by

DmV (m, y) :=

'
∇y

δV

δm

(
(m, y)

Lemma 1 ([Cardaliaguet et al., 2015])

Assume that V is C1 with δV
δm

is C 1 in y and DmV is continuous in both

variables. Let b : Rd → Rd be a Borel measurable and bounded. Then

lim
s↘0

V ((Id + sb)#m)− V (m)

s
=

&

Rd

DmV (m)(y) · b(y)m(dy) .
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Intrinsic/Lions/Wasserstein derivative

Proof.

Let ms,λ := m + λ((Id + sb)#m −m). Then by change of variables formula
and mean value theorem

V ((Id + sb)#m)− V (m) =

& 1

0

&
δV

δm
(ms,λ, y)((Id + s b)#m −m)(dy)dλ

=

& 1

0

& '
δV

δm
(ms,λ, y + s b(y))− δV

δm
(ms,λ, y)

(
m(dy)dλ

= s

& 1

0

& & 1

0

DmV (ms,λ, y + t s b(y))b(y)dt m(dy)dλ

◮ Example: V (m) =
)
Rd f (x)m(dx) = (f ,m).

δV

δm
(m, y) = f (y) and DmV (m, y) = ∇y f (y) .
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Chain Rule - proof due to Paul-Eric Chaudru de Raynal

Xt = X0 +

& t

0

bsds +

& t

0

σsdWs , X0 ∈ L2

◮ Need for the chain rule on P2(Rd) to compute d
dt
V (L(Xt))

Recall µλ,ε = µt + λ(µt+ε − µt), µ
λ,ε → µt when ε → 0.

d

dt
V (µt) = lim

ε↘0
ε−1(V (µt+ε)− V (µt))

= lim
ε↘0

ε−1

& 1

0

&
δV

δm
(µλ,ε

t , y)(µt+ε − µt)(dy)dλ

= lim
ε↘0

ε−1

&
E
$
δV

δm
(µt ,X

t,y
t+ε)−

δV

δm
(µt , y)

%
µt(dy)

=

&
Et,y

$
d

ds

'
δV

δm
(µt ,X

t,y
s )

(
|s=t

%
µt(dy)

=

& $
bt DmV (µt , y) +

1

2
(σσT )t ∇yDm(µt , y)

%
µt(dy)
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Variational perspective on noisy gradient descent
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Variational perspective

◮ Define

V σ(m) :=

&
F (x)m(dx) +

σ2

2
H(m),

where relative entropy H for m ∈ P(Rd)

H(m) :=

!)
Rd m(x) logm(x)dx if m is a.c. w.r.t. Lebesgue measure

∞ otherwise

◮ Let b : R× Rd → Rd be a vector field and consider gradient flow (we take
b so that PDE is well defined)

∂tνt = div(btνt)

◮ Find b so that V σ(νt) ↘ as t → ∞
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Variational perspective

◮ For ε,λ > 0 let νλ,ε
t := νt + λ(νt+ε − νt) we have

∂tV
σ(νt) = lim

ε→0
ε−1 (V σ(νt+ε)− V σ(νt))

= lim
ε→0

ε−1

'& 1

0

&
δV σ

δν
(νλ,ε

t , y)(νt+ε − νt)(dy)dλ

(

◮ Note that νλ,ε
t → νt as ε → 0 hence

∂tV
σ(νt) =

&
δV σ

δν
(νt , y)∂tνt(dy) =

&
δV σ

δν
(νt , y)div(btνt)(dy)

= −
& '

∇y
δV σ

δν

(
(νt , y)btνt(dy)

◮ To have V σ(νt) ↘ take

bt(y) :=

'
∇y

δV σ

δν

(
(νt , y)
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◮ For ε,λ > 0 let νλ,ε
t := νt + λ(νt+ε − νt) we have

∂tV
σ(νt) = lim

ε→0
ε−1 (V σ(νt+ε)− V σ(νt))

= lim
ε→0

ε−1

'& 1

0

&
δV σ

δν
(νλ,ε

t , y)(νt+ε − νt)(dy)dλ

(

◮ Note that νλ,ε
t → νt as ε → 0 hence
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Variational perspective

◮ Recall that V σ(m) = (F ,m) + σ2

2
(logm,m)

δV σ

δm
(m, y) = F (y) +

σ2

2
(logm(y) + 1)

bt(y) =

'
∇y

δV σ

δm

(
(m, y) = (∇yF )(y) +

σ2

2
∇y log(m(y))

◮ Plug this back into the gradient flow equation

∂tνt = div

''
(∇F ) +

σ2

2
∇ log(νt)

(
νt

(

∂tνt = div ((∇F )νt) +
σ2

2
∆νt

◮ What is a minimiser of V σ? Note V σ is strictly convex hence the first
order condition

δV σ

δm
(m, y) = F (y) +

σ2

2
(logm(y) + 1) = const

◮
m(y) = e

− 2
σ2 F (y) · const
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One hidden layer neural network
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Non-covex minimization problem

◮ Consider network

1

n

n*

i=1

βn,iϕ(αn,i · z) =
&

Rd

βϕ(α · z)mn(dβ, dα) .

◮ Denote ϕ̂(x , z) = βϕ(α · z) for x = (α,β) ∈ Rp×n, we should minimize,

x -→
&

R×RD

Φ

'
y − 1

n

n*

i=1

ϕ̂(x i , z)

(
ν(dy , dz)

+ ,- .
=:F (x)

+
σ2

2
|x |2
+,-.
=:U(x)

,

which is non-convex.

◮ Gradient descent with learning rate τ > 0:

x i
k+1 = x i

k − τ∇x i

$
F (xk) +

σ2

2
U(xk)

2

%
, i = 1, . . . , n .

Here x i = (αi ,β i ) ∈ R× RD .

◮ No hope for deterministic gradient to find global minimum....

27 / 50



Non-covex minimization problem

◮ Consider network

1

n

n*

i=1

βn,iϕ(αn,i · z) =
&

Rd

βϕ(α · z)mn(dβ, dα) .

◮ Denote ϕ̂(x , z) = βϕ(α · z) for x = (α,β) ∈ Rp×n, we should minimize,

x -→
&

R×RD

Φ

'
y − 1

n

n*

i=1

ϕ̂(x i , z)

(
ν(dy , dz)

+ ,- .
=:F (x)

+
σ2

2
|x |2
+,-.
=:U(x)

,

which is non-convex.

◮ Gradient descent with learning rate τ > 0:

x i
k+1 = x i

k − τ∇x i

$
F (xk) +

σ2

2
U(xk)

2

%
, i = 1, . . . , n .

Here x i = (αi ,β i ) ∈ R× RD .

◮ No hope for deterministic gradient to find global minimum....

27 / 50



Non-covex minimization problem

◮ Consider network

1

n

n*

i=1

βn,iϕ(αn,i · z) =
&

Rd

βϕ(α · z)mn(dβ, dα) .

◮ Denote ϕ̂(x , z) = βϕ(α · z) for x = (α,β) ∈ Rp×n, we should minimize,

x -→
&

R×RD

Φ

'
y − 1

n

n*

i=1

ϕ̂(x i , z)

(
ν(dy , dz)

+ ,- .
=:F (x)

+
σ2

2
|x |2
+,-.
=:U(x)

,

which is non-convex.

◮ Gradient descent with learning rate τ > 0:

x i
k+1 = x i

k − τ∇x i

$
F (xk) +

σ2

2
U(xk)

2

%
, i = 1, . . . , n .

Here x i = (αi ,β i ) ∈ R× RD .

◮ No hope for deterministic gradient to find global minimum....

27 / 50



Non-covex minimization problem

◮ Consider network

1

n

n*

i=1

βn,iϕ(αn,i · z) =
&

Rd

βϕ(α · z)mn(dβ, dα) .

◮ Denote ϕ̂(x , z) = βϕ(α · z) for x = (α,β) ∈ Rp×n, we should minimize,

x -→
&

R×RD

Φ

'
y − 1

n

n*

i=1

ϕ̂(x i , z)

(
ν(dy , dz)

+ ,- .
=:F (x)

+
σ2

2
|x |2
+,-.
=:U(x)

,

which is non-convex.

◮ Gradient descent with learning rate τ > 0:

x i
k+1 = x i

k − τ∇x i

$
F (xk) +

σ2

2
U(xk)

2

%
, i = 1, . . . , n .

Here x i = (αi ,β i ) ∈ R× RD .

◮ No hope for deterministic gradient to find global minimum....

27 / 50



Approximation with gradient descent

◮ In practice noisy (regularised), gradient descent algorithms are used:

x i
k+1 = x i

k + τ

&

R×RD

Φ̇

'
y − 1

n

n*

j=1

ϕ̂(x j
k , z)

(
∇x i ϕ̂(x

i
k , z) ν(dy , dz)

− σ̄2

2
∇x iU(x i

k) + σ
√
τξik ,

where ξik are i.i.d. samples from N(0, Id).

◮ Taking weak limit gives

dX i
t =

$ &

R×RD

Φ̇

'
y − 1

n

n*

j=1

ϕ̂(X j
t , z)

(
∇x i ϕ̂(X

i
t , z) ν(dy , dz)

− σ̄2

2
∇x iU(X i

t )

%
dt + σdW i

t ,
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Mean-field limit and convexity

◮ Write
1

n

n*

i=1

ϕ̂(x i , z) =

&

Rd

ϕ̂(x , z)mn(dx) as n → ∞ .

◮ The search for the optimal measure m∗ ∈ P(Rd) amounts to minimizing

P(Rd) ∋ m -→
&

R×RD

Φ

'
y −

&

Rd

ϕ̂(x , z)m(dx)

(
ν(dy , dz) =: F (m),

which is convex (as long as Φ) i.e

F ((1− α)m + αm′) ≤ (1− α)F (m) + αF (m′) for all α ∈ [0, 1] .

◮ Observed in the pioneering works of Mei, Misiakiewicz and
Montanari [Mei et al., 2018], Chizat and Bach [Chizat and Bach, 2018] as
well as Rotskoff and Vanden-Eijnden [Rotskoff and Vanden-Eijnden, 2018].
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Derivation of MFLD

◮

FN(x1, . . . , xN) = F

/
1

N

N*

i=1

δx i

0
=

&

Rd

Φ

'
y− 1

N

N*

j=1

ϕ̂(x j , z)

(
ν(dz , dy).

◮ Then

dX i
t = −

1
N∂xiF

N(X 1
t , . . . ,X

N
t ) +

σ2

2
∇U(X i

t )
2
dt + σdW i

t .

◮ We expect to have, as N → ∞,
3
45

46

dXt = −
'
DmF (mt ,Xt) +

σ2

2
∇U(Xt)

(
dt + σdWt t ∈ [0,∞)

mt = Law(Xt) t ∈ [0,∞) .

◮ Fokker–Planck

∂tm = ∇ ·
'1

DmF (m, ·) + σ2

2
∇U

2
m +

σ2

2
∇m

(
on (0,∞)× Rd .
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Energy functional - Variational Perspective

◮ We want to minimise

V σ(m) := F (m) +
σ2

2
H(m),

where relative entropy H for m ∈ P(Rd)

H(m) :=

!)
Rd m(x) log

1
m(x)
g(x)

2
dx if m is a.c. w.r.t. Lebesgue measure

∞ otherwise

and Gibbs measure g :

g(x) = e−U(x) with U s.t.

&

Rd

e−U(x) dx = 1 .

◮ Mean field Langevin Dynamics

dXt = −
'
Dm(mt ,Xt) +

σ2

2
∇U(Xt)

(
dt + σdWt t ∈ [0,∞) .

◮ U gives contraction, W smooths the law
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Assumptions I

Assumption 3

F ∈ C1 is convex and bounded from below.

Assumption 4

The function U : Rd → R belongs to C∞. Further,

i) there exist constants CU > 0 and C ′
U ∈ R such that

∇U(x) · x ≥ CU |x |2 + C ′
U for all x ∈ Rd .

ii) ∇U is Lipschitz continuous.
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Convergence when σ ↘ 0

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the

sequence of functions V σ = F + σ2

2
H converges in the sense of Γ-convergence

to F as σ ↘ 0. In particular, given a minimizer m∗,σ of V σ, we have

lim sup
σ→0

F (m∗,σ) = inf
m∈P2(Rd )

F (m).

Proof outline: Let fn : X → R. Recall that fn Γ-converge to f , if

◮ for every sequence xn → x f (x) ≤ lim infn→∞ fn(xn):

◮ for every x ∈ X , there is a sequence xn converging to x such that
f (x) ≥ lim supn→∞ fn(xn):

◮ To get lim infσn→0 V
σn (mn) ≥ F (m) use l.s.c. of entropy.

◮ To get lim supσn→0 V
σn (mn) ≤ F (m) smooth with heat kernel
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Characterization of the minimizer

Proposition 6

Under Assumption 3 and 4, the function V σ has a unique minimizer
m∗ ∈ P2(Rd) which is absolutely continuous with respect to Lebesgue measure.
Moreover, m! = argminm∈P(Rd ) V

σ iff

δF

δm
(m∗, ·) + σ2

2
log(m∗) +

σ2

2
U is a constant, Leb − a.s,

or equivalently

m!(x) =
1

Z
e
− 2

σ2
δF
δm

(m∗,x)
g(x)
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Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m̄ s.t. V (m̄) < ∞,

S :=

"
m :

σ2

2
H(m) ≤ V σ(m̄)− inf

m′∈P(Rd )
F (m′)

#
.

Since V σ is l.s.c. it attains its minimum on S, say m∗ so V σ(m∗) ≤ V σ(m) for
all m ∈ S.

If m /∈ S then

V σ(m∗) ≤ V σ(m̄) ≤ σ2

2
H(m) + inf

m′∈P(Rd )
F (m′) ≤ V σ(m)

so m∗ is global minimum of V . Since V is strictly convex it is unique.

Step 2 (sufficient condition): Assume m∗ satisfies first order condition then for
any ε > 0 and m ∈ P(Rd) we have

V σ(m)− V σ(m!) ≥ V σ((1− ε)m∗ + εm)− V σ(m∗)

ε

≥
&

Rd

'
δF

δm
(m∗, ·) + σ2

2
logm∗ +

σ2

2
U

(
(m −m∗)(dx) = 0 .
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F (m′) ≤ V σ(m)

so m∗ is global minimum of V . Since V is strictly convex it is unique.

Step 2 (sufficient condition): Assume m∗ satisfies first order condition then for
any ε > 0 and m ∈ P(Rd) we have

V σ(m)− V σ(m!) ≥ V σ((1− ε)m∗ + εm)− V σ(m∗)

ε

≥
&

Rd

'
δF

δm
(m∗, ·) + σ2

2
logm∗ +

σ2

2
U

(
(m −m∗)(dx) = 0 .
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Connection to gradient flow

◮ Recall

∂tm = ∇ ·
'1

DmF (m, ·) + σ2

2
∇U

2
m +

σ2

2
∇m

(
on (0,∞)× Rd ,

◮ If m! is such that

δF

δm
(m∗, ·) + σ2

2
log(m∗) +

σ2

2
U is a constant, m∗ − a.s.

◮ Then m! is a stationary solution of gradient flow PDE

∇ ·
'1

DmF (m
∗, ·) + σ2

2
∇U

2
m∗ +

σ2

2
∇m∗

(
= 0
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Mean-field Langevin equation

We see that if
3
45

46

dXt = −
'
DmF (mt ,Xt) +

σ2

2
∇U(Xt)

(
dt + σdWt t ∈ [0,∞)

mt = Law(Xt) t ∈ [0,∞)

has a solution then (mt)t≥0 solves the Fokker–Planck equation

∂tm = ∇ ·
'1

DmF (m, ·) + σ2

2
∇U

2
m +

σ2

2
∇m

(
on (0,∞)× Rd .

Key challenges in studying invariant measure(s)

◮ Drift not of convolutional form [Carrillo et al., 2003]
Otto [Otto, 2001], [Tugaut et al., 2013]

◮ To establish Γ− convergence need result to hold for all σ, so works
of [Bogachev et al., 2019] and [Eberle et al., 2019] do not apply.
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Assumptions II

Assumption 7

Assume that the intrinsic derivative DmF : P(Rd)× Rd → Rd of the function
F : P(Rd) → R exists and satisfies the following conditions:

i) DmF is bounded and Lipschitz continuous, i.e. there exists CF > 0 such
that for all x , x ∈ Rd and m,m′ ∈ P2(Rd)

|DmF (m, x)− DmF (m
′, x ′)| ≤ CF

7
|x − x ′|+W2(m,m′)

8
.

ii) DmF (m, ·) ∈ C∞(Rd) for all m ∈ P(Rd).

iii) ∇DmF : P(Rd)× Rd → Rd × Rd is jointly continuous.
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Energy Dissipation

Theorem 2

Let m0 ∈ P2(Rd). Under Assumption 4 and 7, we have for any t > s > 0

V σ(mt)− V σ(ms)

= −
& t

s

&

Rd

9999DmF (mr , x) +
σ2

2

∇mr

mr
(x) +

σ2

2
∇U(x)

9999
2

mr (x) dx dr .

Proof outline: Follows from a priori estimates and regularity results on the
nonlinear Fokker–Planck equation and the chain rule for flows of measures.
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Convergence

Theorem 3

Let Assumption 3, 4 and 7 hold true and m0 ∈ ∪p>2Pp(Rd). Denote by
(mt)t≥0 the flow of marginal laws of the solution to MFLD. Then, there exists
an invariant measure of of MFLD equal to m∗ := argminm V σ(m) and

W2(mt ,m
∗) → 0 as t → ∞ .

If V was continuous then result would follow from tightness of (mt)t≥0 and
Theorem 2. The entropy is only l.s.c.

Proof key ingredients: Tightness of (mt)t≥0, Lasalle’s invariance principle,
Theorem 2, HWI inequality.
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Convergence, step 1: invariance

Let S(t)[m0] := mt , marginals of solution to MFLD started from m0.

Define ω-limit set

ω(m0) :=
:
µ ∈ P2(Rd) : ∃(tn)n∈N s.t. W2(mtn , µ) → 0 as n → ∞

;
.

Then

i) ω(m0) is nonempty and compact (since for any t ≥ 0, (ms)s≥t is relatively

compact, w(m0) =
<

t≥0 (ms)s≥t),

ii) if µ ∈ ω(m0) then S(t)[µ] ∈ ω(m0) for all t ≥ 0,

iii) if µ ∈ ω(m0) then for any t ≥ 0 there exists µ′ s.t. S(t)[µ′] = µ.
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Convergence, step 1: invariance

Prove that m! ∈ ω(m0)

Since ω(m0) is compact, there is m̃ ∈ argminm∈ω(m0)
V (m).

from iii) ∀t > 0 there is µ s.t. S(t)[µ] = m̃ and by Theorem 2 for any s > 0 we
get

V (S(t + s)[µ]) ≤ V (S(t)[µ]) = V (m̃) .

from ii) (invariance) S(t + s)[µ] ∈ ω(m0) so V (S(t + s)[µ]) ≥ V (m̃)
(definition of m̃ ).

By Theorem 2

0 =
dV (S(t)[µ])

dt
= −

&

Rd

9999DmF (m̃, x) +
σ2

2

∇m̃

m̃
(x) +

σ2

2
∇U(x)

9999
2

m̃(x) dx .

Due to the first order condition (Proposition 6) get m̃ = m∗.
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Convergence, step 2: HWI inequality

m! ∈ ω(m0) =⇒ ∃(mtn ) → m!

We want to show that if mtn → m∗ then V σ(mtn ) → V σ(m∗).

But V = F + σ2

2
H and H only l.s.c. So we need to show that

&

Rd

m∗ log(m∗) dx ≥ lim sup
n→∞

&

Rd

mtn log(mtn ) dx .
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Convergence, step 2: HWI inequality [Otto and Villani, 2000]

Assume that ν(dx) = e−Ψ(x)(dx) is a P2(Rd) measure s.t. Ψ ∈ C 2(Rd), there
is K ∈ R s.t. ∂xxΨ ≥ KId . Then for any µ ∈ P(Rd) absolutely continuous
w.r.t. ν we have

H(µ|ν) ≤ W2(µ, ν)

'=
I (µ|ν)− K

2
W2(µ, ν)

(
,

where I is the Fisher information:

I (µ|ν) :=
&

Rd

9999∇ log
dµ

dν
(x)

9999
2

µ(dx) .
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Convergence, step 2: HWI inequality

We thus have
&

Rd

mtn

1
log(mtn )− log(m∗)

2
dx ≤ W2(mtn ,m

∗)
1√

In + CW2(mtn ,m
∗)
2
,

with

In := E
$999∇ log

1
mtn (Xtn )

2
−∇ log

1
m∗(Xtn )

2999
2
%
.

Need to show supn In < ∞ (estimate on Malliavin derivative of the change of
measure exponential).
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Convergence, step 3

Have mtn → m∗ for some tn → ∞. Moreover t -→ V (mt) is non-increasing in t
so there is c := limn→∞ V (tn).

Use uniqueness of m∗ and step 2 to show that any other sequence V (mtn′ )
converges to the same c, ω(m0) = {m∗}, so W2(mt ,m

∗) → 0.
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Exponential convergence

Theorem 4

If σ is sufficiently large, there exists λ > 0 s.t

W2(mt ,m
∗) ≤ e−λtW2(m0,m

∗) .

Proof see: [Eberle et al., 2019],[Hu et al., 2019a]

◮ New perspective on Lazy training paradigm.
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