From the theory of (stochastic) control to deep learning and back

Lukasz Szpruch University of Edinburgh, The Alan Turing Institute, London

Figure: David Siska

Figure: Kaitong Hu

Figure: Zhenjie Ren

Figure: Jean-Francois Jabir

Outline

- ightharpoonup Sampling vs optimisation on \mathbb{R}^d
- Mean-Field Langevin Dynamics training of one hidden layer neural network viewed as an optimisation problem over Wassersatin space, [Hu et al., 2019b].
- Neural ODEs via Relaxed Optimal Control. A perspective on deep recurrent neural networks, [Jabir et al., 2019].
- Gradient flows for (regularised) stochastic control problem, [Šiška and Szpruch, 2020].
- ▶ Robust pricing and hedging with neural SDEs, [Gierjatowicz et al., 2020].
- Unbiased approximation of parametric path dependent PDEs, [Vidales et al., 2018].

► Training neural nets is a sampling problem

- Training neural nets is a sampling problem
- ► Gradient flow view on training neural networks provides mathematical framework to study machine learning

- ► Training neural nets is a sampling problem
- Gradient flow view on training neural networks provides mathematical framework to study machine learning
- ▶ Probabilistic numerical analysis provides quantitative bounds that do not suffer from the curse of dimensionality

- ► Training neural nets is a sampling problem
- Gradient flow view on training neural networks provides mathematical framework to study machine learning
- Probabilistic numerical analysis provides quantitative bounds that do not suffer from the curse of dimensionality
- Machine learning perspective leads to new algorithms and mathematical tools for (stochastic) control problems and offers a fresh perspective on classical quantitative finance problems.

▶ Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - ▶ architectural innovations (e.g. many layers, dropout, LSTMs)

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - ► architectural innovations (e.g. many layers, dropout, LSTMs)
 - ► algorithmic innovations (e.g ADAM methods)

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - ▶ architectural innovations (e.g. many layers, dropout, LSTMs)
 - ► algorithmic innovations (e.g ADAM methods)
 - vastly larger data sets

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - ▶ architectural innovations (e.g. many layers, dropout, LSTMs)
 - ► algorithmic innovations (e.g ADAM methods)
 - vastly larger data sets
 - Benchmark data sets (MNIST, ImageNet, CIFAR)

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - architectural innovations (e.g. many layers, dropout, LSTMs)
 - algorithmic innovations (e.g ADAM methods)
 - vastly larger data sets
 - Benchmark data sets (MNIST, ImageNet, CIFAR)
 - ► GPUs, TPUs and cloud computing

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - architectural innovations (e.g. many layers, dropout, LSTMs)
 - algorithmic innovations (e.g ADAM methods)
 - vastly larger data sets
 - Benchmark data sets (MNIST, ImageNet, CIFAR)
 - ► GPUs, TPUs and cloud computing
 - very efficient open source libraries (Tensorflow, Theano, Torch).

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - ► architectural innovations (e.g. many layers, dropout, LSTMs)
 - ► algorithmic innovations (e.g ADAM methods)
 - vastly larger data sets
 - ▶ Benchmark data sets (MNIST, ImageNet, CIFAR)
 - GPUs, TPUs and cloud computing
 - very efficient open source libraries (Tensorflow, Theano, Torch).
- "Imagenet classification with deep convolutional neural networks" by Krizhevsky, Sutskever, Hinton, (2012) NIPS - 68613 citation as of 31-08-2020.

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - ► architectural innovations (e.g. many layers, dropout, LSTMs)
 - algorithmic innovations (e.g ADAM methods)
 - vastly larger data sets
 - ▶ Benchmark data sets (MNIST, ImageNet, CIFAR)
 - ► GPUs, TPUs and cloud computing
 - very efficient open source libraries (Tensorflow, Theano, Torch).
- "Imagenet classification with deep convolutional neural networks" by Krizhevsky, Sutskever, Hinton, (2012) NIPS - 68613 citation as of 31-08-2020.
- ► "Grandmaster level in StarCraft II using multi-agent reinforcement learning" by Vinyals, Babuschkin,...,David Silver, (2019) Nature. Estimated cost of training the algorithm \$30m.

- Neural networks appeared in the 1943 seminal work by Warren McCulloch and Walter Pitts inspired by certain functionalities of the brain aiming for artificial intelligence (AI)
- Excellent performance (image and language recognition, classification tasks, etc) due to
 - ► architectural innovations (e.g. many layers, dropout, LSTMs)
 - algorithmic innovations (e.g ADAM methods)
 - vastly larger data sets
 - Benchmark data sets (MNIST, ImageNet, CIFAR)
 - ► GPUs, TPUs and cloud computing
 - very efficient open source libraries (Tensorflow, Theano, Torch).
- "Imagenet classification with deep convolutional neural networks" by Krizhevsky, Sutskever, Hinton, (2012) NIPS - 68613 citation as of 31-08-2020.
- "Grandmaster level in StarCraft II using multi-agent reinforcement learning" by Vinyals, Babuschkin,...,David Silver, (2019) Nature. Estimated cost of training the algorithm - \$30m.
- ▶ So far deep learning is successful in a 'relatively' stationary regime.

Neural networks

 $\overline{\mathsf{i})}$ an activation function $arphi:\mathbb{R} o\mathbb{R};\ arphi(\mathsf{z})=(arphi(\mathsf{z}_1),\ldots,arphi(\mathsf{z}_l))^{ op}$

Neural networks

- i) an activation function $\varphi : \mathbb{R} \to \mathbb{R}$; $\varphi(z) = (\varphi(z_1), \dots, \varphi(z_l))^{\top}$
- ii) The space of parameters

$$\boldsymbol{\Pi} = (\mathbb{R}^{l^1 \times l^0} \times \mathbb{R}^{l^1}) \times (\mathbb{R}^{l^2 \times l^1} \times \mathbb{R}^{l^2}) \times \cdots \times (\mathbb{R}^{l^L \times l^{L-1}} \times \mathbb{R}^{l^L}),$$

Neural networks

- i) an activation function $\varphi : \mathbb{R} \to \mathbb{R}$; $\varphi(z) = (\varphi(z_1), \dots, \varphi(z_l))^{\top}$
- ii) The space of parameters

$$\boldsymbol{\Pi} = (\mathbb{R}^{l^1 \times l^0} \times \mathbb{R}^{l^1}) \times (\mathbb{R}^{l^2 \times l^1} \times \mathbb{R}^{l^2}) \times \cdots \times (\mathbb{R}^{l^L \times l^{L-1}} \times \mathbb{R}^{l^L}),$$

iii) Defines a function $\mathcal{R}\Psi:\mathbb{R}^{I^0} o\mathbb{R}^{I^L}$ given recursively, for $x_0\in\mathbb{R}^{I^0}$, by $z_0\in\mathbb{R}^{I^0}$, by

$$\begin{cases} z^k = \varphi^{l^k}(\alpha^k z^{k-1} + \beta^k), k = 1, \dots, L - 1. \\ (\mathcal{R}\Psi)(z^0) = \alpha^L z^{L-1} + \beta^L \end{cases}$$

Arnold-Kolmogorov theorem and Universal approximation

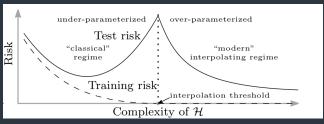
If an activation function φ is bounded, continuous and non-constant, then for any compact set $K\subset\mathbb{R}^d$ the set

$$igg\{(\mathcal{R}\Psi):\mathbb{R}^d o\mathbb{R}:(\mathcal{R}\Psi) ext{ given above}$$
 with $L=2$ for some $n\in\mathbb{N}, lpha_j^2, eta_j^1\in\mathbb{R}, lpha_j^1\in\mathbb{R}^d, j=1,\ldots,nigg\}$

is dense in the space of continuous functions from K to \mathbb{R} . See e.g. Hornik [Hornik, 1991], [Cybenko, 1989].

- ▶ Practical quantitative results are possible when working with additional structural assumptions (e.g low-dimensional hypothesis)
- ▶ Some recent work [Schmidt-Hieber et al., 2020], [Ma et al., 2019]

New era of overparameterized statistical models?



From Belkin. et.al. [Belkin et al., 2018].

- Need for new theory to study generalisation error. Classical Vapnik dimension and Rademacher complexity doesn't help.
- ▶ Overparametrised models can be optimal in the high signal-to-noise ratio regime Montanari et.al [Mei and Montanari, 2019]
- Implicit Regularisation [Heiss et al., 2019], [Neyshabur et al., 2017]

Key Questions

- i) Function approximation theory: the challenge is to derive non-asymptotic results; expressiveness in terms of width and depth; network architecture design: feed-forward, convolutional, LSTM, ResNet, Attention Networks...
- ii) Generalisation error in particular in overparametrised regime.
- iii) Non-convex optimisation and effect of noise in stochastic gradient algorithms, in general non-convex optimisation problems are NP-hard; links with the optimisation; lazy and mean-field regimes in overparametrised setting

(Noisy) Gradient Descent

▶ Consider $F : \mathbb{R}^d \to \mathbb{R}$

- ▶ Consider $F: \mathbb{R}^d \to \mathbb{R}$
- Assume F is strongly convex with parameter m>0 i.e $\forall x,y$ and $\alpha\in(0,1)$ we have

$$(x-y, \nabla_x F(x) - \nabla_x F(y)) \ge m |x-y|^2$$

- ▶ Consider $F: \mathbb{R}^d \to \mathbb{R}$
- Assume F is strongly convex with parameter m>0 i.e $\forall x,y$ and $\alpha\in(0,1)$ we have

$$(x-y, \nabla_x F(x) - \nabla_x F(y)) \ge m|x-y|^2$$

equivalently

$$F(y) \ge F(x) + (\nabla_x F(x), y - x) + \frac{m}{2} |y - x|^2$$

- ▶ Consider $F: \mathbb{R}^d \to \mathbb{R}$
- ▶ Assume F is strongly convex with parameter m>0 i.e $\forall x,y$ and $\alpha\in(0,1)$ we have

$$(x-y, \nabla_x F(x) - \nabla_x F(y)) \ge m|x-y|^2$$

equivalently

$$F(y) \ge F(x) + (\nabla_x F(x), y - x) + \frac{m}{2} |y - x|^2$$

equivalently

$$F(\alpha + (1 - \alpha)y) \le \alpha F(x) + (1 - \alpha)F(y) - \frac{1}{2}m\alpha(1 - \alpha)|x - y|^2$$

Gradient flow on \mathbb{R}^d

▶ Classical gradient descent algorithm with fixed learning rata $\gamma > 0$

$$x_{n+1} = x_n - \gamma(\nabla_x F)(x_n)$$

Gradient flow on \mathbb{R}^{d}

lacktriangle Classical gradient descent algorithm with fixed learning rata $\gamma>0$

$$x_{n+1} = x_n - \gamma(\nabla_x F)(x_n)$$

► Continuous view point aka gradient flow

$$dx_t = -(\nabla_x F)(x_t)dt$$

Gradient flow on \mathbb{R}^d

lacktriangle Classical gradient descent algorithm with fixed learning rata $\gamma>0$

$$x_{n+1} = x_n - \gamma(\nabla_x F)(x_n)$$

► Continuous view point aka gradient flow

$$dx_t = -(\nabla_x F)(x_t)dt$$

 \triangleright F is decreasing along gradient flow (x_t)

$$dF(x_t) = (\nabla_x F)(x_t) dx_t = -|(\nabla_x F)(x_t)|^2 dt$$
.

Gradient flow on \mathbb{R}^d

lacktriangle Classical gradient descent algorithm with fixed learning rata $\gamma>0$

$$x_{n+1} = x_n - \gamma(\nabla_x F)(x_n)$$

Continuous view point aka gradient flow

$$dx_t = -(\nabla_x F)(x_t)dt$$

 \triangleright F is decreasing along gradient flow (x_t)

$$dF(x_t) = (\nabla_x F)(x_t) dx_t = -|(\nabla_x F)(x_t)|^2 dt.$$

▶ Since *F* is strongly convex $\exists ! x^*$ s.t $F(x^*) = min_x F(x)$.

Rate of convergence

▶ We can easily compute the rate of convergence

$$d(x_t - x^*) = -((\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt$$

Rate of convergence

▶ We can easily compute the rate of convergence

$$d(x_t - x^*) = -((\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt$$

► Hence

$$|d|x_t - x^*|^2 = -2(x_t - x^*, (\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt \le -2m|x_t - x^*|$$

Rate of convergence

▶ We can easily compute the rate of convergence

$$d(x_t - x^*) = -((\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt$$

Hence

$$|d|x_t - x^*|^2 = -2(x_t - x^*, (\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt \le -2m|x_t - x^*|$$

We have

$$|x_t - x^*|^2 \le |x_0 - x^*|^2 e^{-2mt}$$

Rate of convergence

We can easily compute the rate of convergence

$$d(x_t - x^*) = -((\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt$$

Hence

$$|d|x_t - x^*|^2 = -2(x_t - x^*, (\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt \le -2m|x_t - x^*|$$

We have

$$|x_t - x^*|^2 \le |x_0 - x^*|^2 e^{-2mt}$$

Exercise: Do a computation directly for discrete time dynamics. Need F Lipschitz and the Lipschitz constant matters.

Rate of convergence

▶ We can easily compute the rate of convergence

$$d(x_t - x^*) = -((\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt$$

Hence

$$|d|x_t - x^*|^2 = -2(x_t - x^*, (\nabla_x F)(x_t) - (\nabla_x F)(x^*))dt \le -2m|x_t - x^*|$$

We have

$$|x_t - x^{\star}|^2 \le |x_0 - x^{\star}|^2 e^{-2mt}$$

- Exercise: Do a computation directly for discrete time dynamics. Need F Lipschitz and the Lipschitz constant matters.
- ▶ If we drop the assumption that *F* is convex, gradient descent can only converge to a local minimum.

ightharpoonup Consider noisy gradient descent with $\sigma > 0$

$$dX_t = -(\nabla_x F)(X_t)dt + \sigma dW_t$$

▶ Consider noisy gradient descent with $\sigma > 0$

$$dX_t = -(\nabla_x F)(X_t)dt + \sigma dW_t$$

▶ A natural question: $\mu_t := \mathcal{L}(X_t) \to ?$ when $t \to \infty$.

▶ Consider noisy gradient descent with $\sigma > 0$

$$dX_t = -(\nabla_x F)(X_t)dt + \sigma dW_t$$

- ▶ A natural question: $\mu_t := \mathcal{L}(X_t) \to ?$ when $t \to \infty$.
- ightharpoonup PDE for the law. Let $\phi \in C^2(\mathbb{R}^d)$

$$rac{d}{dt}\mathbb{E}[\phi(X_t)] = \mathbb{E}\left[-(
abla F)(X_t)\cdot
abla \phi(X_t) + rac{\sigma^2}{2}
abla^2\phi(X_t)
ight]\,.$$

▶ Consider noisy gradient descent with $\sigma > 0$

$$dX_t = -(\nabla_{\mathsf{x}}F)(X_t)dt + \sigma dW_t$$

- ▶ A natural question: $\mu_t := \mathcal{L}(X_t) \to ?$ when $t \to \infty$.
- ▶ PDE for the law. Let $\phi \in C^2(\mathbb{R}^d)$

$$\frac{d}{dt}\mathbb{E}[\phi(X_t)] = \mathbb{E}\left[-(\nabla F)(X_t) \cdot \nabla \phi(X_t) + \frac{\sigma^2}{2}\nabla^2 \phi(X_t)\right].$$

▶ Suppose that μ_t admits density $\mu(t,x)$

$$\frac{d}{dt} \int_{\mathbb{R}^d} \phi(x) \mu(t, x) dx = \int_{\mathbb{R}^d} \left(-(\nabla F)(x) \nabla \phi(x) + \frac{\sigma^2}{2} \nabla^2 \phi(x) \right) \mu(t, x) dx
= \int_{\mathbb{R}^d} \left(\operatorname{div}((\nabla F)(x) \mu(t, x)) + \frac{\sigma^2}{2} \nabla^2 \mu(t, x) \right) \phi(x) dx$$

▶ Consider noisy gradient descent with $\sigma > 0$

$$dX_t = -(\nabla_x F)(X_t)dt + \sigma dW_t$$

- ▶ A natural question: $\mu_t := \mathcal{L}(X_t) \to ?$ when $t \to \infty$.
- ightharpoonup PDE for the law. Let $\phi \in C^2(\mathbb{R}^d)$

$$\frac{d}{dt}\mathbb{E}[\phi(X_t)] = \mathbb{E}\left[-(\nabla F)(X_t) \cdot \nabla \phi(X_t) + \frac{\sigma^2}{2}\nabla^2 \phi(X_t)\right].$$

▶ Suppose that μ_t admits density $\mu(t,x)$

$$\frac{d}{dt} \int_{\mathbb{R}^d} \phi(x) \mu(t, x) dx = \int_{\mathbb{R}^d} \left(-(\nabla F)(x) \nabla \phi(x) + \frac{\sigma^2}{2} \nabla^2 \phi(x) \right) \mu(t, x) dx
= \int_{\mathbb{R}^d} \left(\operatorname{div}((\nabla F)(x) \mu(t, x)) + \frac{\sigma^2}{2} \nabla^2 \mu(t, x) \right) \phi(x) dx$$

▶ Since this holds for all ϕ , $\mu = \mu(t, x)$ solves

$$\partial_t \mu = \operatorname{div}((\nabla F)\mu) + \frac{\sigma^2}{2}\Delta\mu$$

▶ Under mild conditions on ∇F , X is ergodic with invariant measure

$$\pi(dx) = \frac{1}{Z}e^{-\frac{2}{\sigma^2}F(x)}dx \quad Z = \int_{\mathbb{R}^d} e^{-\frac{-2}{\sigma^2}F(x)}dx$$

▶ Under mild conditions on ∇F , X is ergodic with invariant measure

$$\pi(dx) = \frac{1}{Z}e^{-\frac{2}{\sigma^2}F(x)}dx \quad Z = \int_{\mathbb{R}^d} e^{-\frac{-2}{\sigma^2}F(x)}dx$$

▶ In other words for all X_0 , $\mu_t = \mathcal{L}(X_t)$ converges weakly to π

▶ Under mild conditions on ∇F , X is ergodic with invariant measure

$$\pi(dx) = \frac{1}{Z}e^{-\frac{2}{\sigma^2}F(x)}dx \quad Z = \int_{\mathbb{R}^d} e^{-\frac{-2}{\sigma^2}F(x)}dx$$

- ▶ In other words for all X_0 , $\mu_t = \mathcal{L}(X_t)$ converges weakly to π
- Indeed plugging in π into right-hand side of the PDE:

$$\begin{split} &\frac{1}{Z} \int_{\mathbb{R}^d} \left(-\nabla F(x) \nabla \phi(x) + \frac{\sigma^2}{2} \nabla^2 \phi(x) \right) e^{-\frac{2}{\sigma^2} F(x)} dx \\ &= \frac{1}{Z} \int_{\mathbb{R}^d} \left(-\nabla F(x) \nabla \phi(x) + \frac{\sigma^2}{2} \nabla \phi(x) \frac{2}{\sigma^2} \nabla F(x) \right) e^{-\frac{2}{\sigma^2} F(x)} dx = 0 \\ &\implies \frac{d}{dt} \mathbb{E}[\phi(X_t)] = 0 \end{split}$$

▶ Under mild conditions on ∇F , X is ergodic with invariant measure

$$\pi(dx) = \frac{1}{Z}e^{-\frac{2}{\sigma^2}F(x)}dx \quad Z = \int_{\mathbb{R}^d} e^{-\frac{-2}{\sigma^2}F(x)}dx$$

- ▶ In other words for all X_0 , $\mu_t = \mathcal{L}(X_t)$ converges weakly to π
- Indeed plugging in π into right-hand side of the PDE:

$$\begin{split} &\frac{1}{Z} \int_{\mathbb{R}^d} \left(-\nabla F(x) \nabla \phi(x) + \frac{\sigma^2}{2} \nabla^2 \phi(x) \right) e^{-\frac{2}{\sigma^2} F(x)} dx \\ &= \frac{1}{Z} \int_{\mathbb{R}^d} \left(-\nabla F(x) \nabla \phi(x) + \frac{\sigma^2}{2} \nabla \phi(x) \frac{2}{\sigma^2} \nabla F(x) \right) e^{-\frac{2}{\sigma^2} F(x)} dx = 0 \\ &\implies \frac{d}{dt} \mathbb{E}[\phi(X_t)] = 0 \end{split}$$

▶ Hence π is a stationary solution to the PDE. Extra work needed to prove that $\mu_t \Rightarrow \pi$.

$$\pi(dx) = \frac{1}{Z}e^{-\frac{2}{\sigma^2}F(x)}dx$$

$$\pi(dx) = \frac{1}{Z}e^{-\frac{2}{\sigma^2}F(x)}dx$$

ightharpoonup Consider $\delta > 0$

$$\pi(F(X) > \min F + \delta) = \frac{1}{Z} \int 1_{\{F(x) > \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx$$

$$\leq \frac{\int 1_{\{F(x) > \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx}{\int 1_{\{F(x) \leq \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx}$$

P

$$\pi(dx) = \frac{1}{Z}e^{-\frac{2}{\sigma^2}F(x)}dx$$

ightharpoonup Consider $\delta > 0$

$$\pi(F(X) > \min F + \delta) = \frac{1}{Z} \int 1_{\{F(x) > \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx$$

$$\leq \frac{\int 1_{\{F(x) > \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx}{\int 1_{\{F(x) \leq \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx}$$

 $F(x) \le \min F + \delta \implies \frac{1}{e^{-F(x)}} \le \frac{1}{e^{-(\min F + \delta)}}$

$$\pi(F(x) > \min F + \delta) \leq \frac{\int \mathbf{1}_{\{F(x) > \min F + \delta\}} e^{-\frac{2}{\sigma^2}(F(x) - (\min F + \delta))} dx}{\int \mathbf{1}_{\{F(x) \leq \min F + \delta\}} dx} \to 0 \text{ as } \sigma \to 0$$

P

$$\pi(dx) = \frac{1}{Z}e^{-\frac{2}{\sigma^2}F(x)}dx$$

ightharpoonup Consider $\delta > 0$

$$\pi(F(X) > \min F + \delta) = \frac{1}{Z} \int 1_{\{F(x) > \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx$$

$$\leq \frac{\int 1_{\{F(x) > \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx}{\int 1_{\{F(x) \leq \min F + \delta\}} e^{-\frac{2}{\sigma^2} F(x)} dx}$$

 $ightharpoonup F(x) \le \min F + \delta \implies \frac{1}{e^{-F(x)}} \le \frac{1}{e^{-(\min F + \delta)}}$

$$\pi(F(x) > \min F + \delta) \leq \frac{\int \mathbf{1}_{\{F(x) > \min F + \delta\}} e^{-\frac{2}{\sigma^2}(F(x) - (\min F + \delta))} dx}{\int \mathbf{1}_{\{F(x) \leq \min F + \delta\}} dx} \to 0 \text{ as } \sigma \to 0$$

- As $\sigma \to 0$ the π concentrates near minimiser of F
- ▶ No Convexity required!. See [Hwang, 1980].

Differential Calculus on $\mathcal{P}(\mathbb{R}^d)$

Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that $V: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ is \mathcal{C}^1 if there exists a continuous map $\frac{\delta V}{\delta m}: \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ such that for any $m, m' \in \mathcal{P}(\mathbb{R}^d)$

$$\lim_{s\searrow 0}\frac{V((1-s)m+sm')-V(m)}{s}=\int_{\mathbb{R}^d}\frac{\delta V}{\delta m}(m,y)(m'-m)(dy)\,.$$

Note $\frac{\delta V}{\delta m}$ is defined up to normalising constant. We take

$$\int_{\mathbb{R}^d} \frac{\delta V}{\delta m}(m, y) m(dy) = 0$$

Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that $V: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ is \mathcal{C}^1 if there exists a continuous map $\frac{\delta V}{\delta m}: \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ such that for any $m, m' \in \mathcal{P}(\mathbb{R}^d)$

$$\lim_{s\searrow 0}\frac{V((1-s)m+sm')-V(m)}{s}=\int_{\mathbb{R}^d}\frac{\delta V}{\delta m}(m,y)(m'-m)(dy).$$

Note $\frac{\delta V}{\delta m}$ is defined up to normalising constant. We take

$$\int_{\mathbb{R}^d} \frac{\delta V}{\delta m}(m, y) m(dy) = 0$$

▶ Take $\lambda \in (0,1)$. Define $m^{\lambda} := m + \lambda(m' - m)$ and note that

$$V(m') - V(m) = \int_0^1 \int_{\mathbb{R}^d} \frac{\delta V}{\delta m}(m^{\lambda}, y)(m' - m)(dy) d\lambda$$

Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that $V: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ is \mathcal{C}^1 if there exists a continuous map $\frac{\delta V}{\delta m}: \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}$ such that for any $m, m' \in \mathcal{P}(\mathbb{R}^d)$

$$\lim_{s\searrow 0}\frac{V((1-s)m+sm')-V(m)}{s}=\int_{\mathbb{R}^d}\frac{\delta V}{\delta m}(m,y)(m'-m)(dy).$$

Note $\frac{\delta V}{\delta m}$ is defined up to normalising constant. We take

$$\int_{\mathbb{R}^d} \frac{\delta V}{\delta m}(m, y) m(dy) = 0$$

▶ Take $\lambda \in (0,1)$. Define $m^{\lambda} := m + \lambda(m' - m)$ and note that

$$V(m') - V(m) = \int_0^1 \int_{\mathbb{R}^d} \frac{\delta V}{\delta m}(m^{\lambda}, y)(m' - m)(dy) d\lambda$$

Note that regularity of $\frac{\delta V}{\delta m}(m,y)$ in y may determine the metric (e.g total variation or Wasserstein) in which V is Lipschitz.

Intrinsic/Lions/Wasserstein derivative

Definition 2

If $\frac{\delta V}{\delta m}$ is C^1 in y the intrinsic derivative $D_m V: \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}^d$ is defined by

$$D_mV(m,y):=\left(\nabla_y\frac{\delta V}{\delta m}\right)(m,y)$$

Lemma 1 ([Cardaliaguet et al., 2015])

Assume that V is C^1 with $\frac{\delta V}{\delta m}$ is C^1 in y and $D_m V$ is continuous in both variables. Let $b: \mathbb{R}^d \to \mathbb{R}^d$ be a Borel measurable and bounded. Then

$$\lim_{s\searrow 0}\frac{V((Id+sb)\#m)-V(m)}{s}=\int_{\mathbb{R}^d}D_mV(m)(y)\cdot b(y)m(dy).$$

Intrinsic/Lions/Wasserstein derivative

Proof.

Let $m^{s,\lambda}:=m+\lambda((Id+sb)\#m-m)$. Then by change of variables formula and mean value theorem

$$V((Id+sb)\#m) - V(m) = \int_0^1 \int \frac{\delta V}{\delta m} (m^{s,\lambda}, y)((Id+sb)\#m - m)(dy)d\lambda$$

$$= \int_0^1 \int \left(\frac{\delta V}{\delta m} (m^{s,\lambda}, y + sb(y)) - \frac{\delta V}{\delta m} (m^{s,\lambda}, y)\right) m(dy)d\lambda$$

$$= s \int_0^1 \int \int_0^1 D_m V(m^{s,\lambda}, y + tsb(y))b(y)dt m(dy)d\lambda$$

Example:
$$V(m) = \int_{\mathbb{R}^d} f(x) \, m(dx) = (f, m).$$

$$\frac{\delta V}{\delta m}(m, y) = f(y) \text{ and } D_m V(m, y) = \nabla_y f(y).$$

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \ X_0 \in L^2$$

Recall
$$\mu^{\lambda,\epsilon}=\mu_t+\lambda(\mu_{t+\epsilon}-\mu_t)$$
, $\mu^{\lambda,\epsilon}\to\mu_t$ when $\epsilon\to 0$.
$$\frac{d}{dt}V(\mu_t)=\lim_{\epsilon\searrow 0}\epsilon^{-1}(V(\mu_{t+\epsilon})-V(\mu_t))$$

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \ X_0 \in L^2$$

Recall
$$\mu^{\lambda,\epsilon} = \mu_t + \lambda(\mu_{t+\epsilon} - \mu_t)$$
, $\mu^{\lambda,\epsilon} \to \mu_t$ when $\epsilon \to 0$.
$$\frac{d}{dt}V(\mu_t) = \lim_{\epsilon \searrow 0} \epsilon^{-1}(V(\mu_{t+\epsilon}) - V(\mu_t))$$
$$= \lim_{\epsilon \searrow 0} \epsilon^{-1} \int_0^1 \int \frac{\delta V}{\delta m}(\mu_t^{\lambda,\epsilon}, y)(\mu_{t+\epsilon} - \mu_t)(dy) d\lambda$$

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \ X_0 \in L^2$$

Recall
$$\mu^{\lambda,\epsilon} = \mu_t + \lambda(\mu_{t+\epsilon} - \mu_t), \ \mu^{\lambda,\epsilon} \to \mu_t \text{ when } \epsilon \to 0.$$

$$\frac{d}{dt}V(\mu_t) = \lim_{\epsilon \searrow 0} \epsilon^{-1}(V(\mu_{t+\epsilon}) - V(\mu_t))$$

$$= \lim_{\epsilon \searrow 0} \epsilon^{-1} \int_0^1 \int \frac{\delta V}{\delta m}(\mu_t^{\lambda,\epsilon}, y)(\mu_{t+\epsilon} - \mu_t)(dy)d\lambda$$

$$= \lim_{\epsilon \searrow 0} \epsilon^{-1} \int \mathbb{E}\left[\frac{\delta V}{\delta m}(\mu_t, X_{t+\epsilon}^{t,y}) - \frac{\delta V}{\delta m}(\mu_t, y)\right] \mu_t(dy)$$

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \ X_0 \in L^2$$

Recall
$$\mu^{\lambda,\epsilon} = \mu_t + \lambda(\mu_{t+\epsilon} - \mu_t)$$
, $\mu^{\lambda,\epsilon} \to \mu_t$ when $\epsilon \to 0$.
$$\frac{d}{dt}V(\mu_t) = \lim_{\epsilon \searrow 0} \epsilon^{-1}(V(\mu_{t+\epsilon}) - V(\mu_t))$$
$$= \lim_{\epsilon \searrow 0} \epsilon^{-1} \int_0^1 \int \frac{\delta V}{\delta m}(\mu_t^{\lambda,\epsilon}, y)(\mu_{t+\epsilon} - \mu_t)(dy)d\lambda$$
$$= \lim_{\epsilon \searrow 0} \epsilon^{-1} \int \mathbb{E}\left[\frac{\delta V}{\delta m}(\mu_t, X_{t+\epsilon}^{t,y}) - \frac{\delta V}{\delta m}(\mu_t, y)\right] \mu_t(dy)$$
$$= \int \mathbb{E}^{t,y} \left[\frac{d}{ds} \left(\frac{\delta V}{\delta m}(\mu_t, X_s^{t,y})\right)|_{s=t}\right] \mu_t(dy)$$

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \ X_0 \in L^2$$

Recall
$$\mu^{\lambda,\epsilon} = \mu_t + \lambda(\mu_{t+\epsilon} - \mu_t), \ \mu^{\lambda,\epsilon} \to \mu_t \text{ when } \epsilon \to 0.$$

$$\frac{d}{dt} V(\mu_t) = \lim_{\epsilon \searrow 0} \epsilon^{-1} (V(\mu_{t+\epsilon}) - V(\mu_t))$$

$$= \lim_{\epsilon \searrow 0} \epsilon^{-1} \int_0^1 \int \frac{\delta V}{\delta m} (\mu_t^{\lambda,\epsilon}, y) (\mu_{t+\epsilon} - \mu_t) (dy) d\lambda$$

$$= \lim_{\epsilon \searrow 0} \epsilon^{-1} \int \mathbb{E} \left[\frac{\delta V}{\delta m} (\mu_t, X_{t+\epsilon}^{t,y}) - \frac{\delta V}{\delta m} (\mu_t, y) \right] \mu_t (dy)$$

$$= \int \mathbb{E}^{t,y} \left[\frac{d}{ds} \left(\frac{\delta V}{\delta m} (\mu_t, X_s^{t,y}) \right) |_{s=t} \right] \mu_t (dy)$$

$$= \int \left[b_t D_m V(\mu_t, y) + \frac{1}{2} (\sigma \sigma^T)_t \nabla_y D_m (\mu_t, y) \right] \mu_t (dy)$$

Variational perspective on noisy gradient descent

Define

$$V^{\sigma}(m) := \int F(x)m(dx) + \frac{\sigma^2}{2}H(m),$$

where relative entropy H for $m \in \mathcal{P}(\mathbb{R}^d)$

$$H(m) := egin{cases} \int_{\mathbb{R}^d} m(x) \log m(x) dx & ext{if } m ext{ is a.c. w.r.t. Lebesgue measure} \\ \infty & ext{otherwise} \end{cases}$$

Define

$$V^{\sigma}(m) := \int F(x)m(dx) + \frac{\sigma^2}{2}H(m),$$

where relative entropy H for $m \in \mathcal{P}(\mathbb{R}^d)$

$$H(m) := egin{cases} \int_{\mathbb{R}^d} m(x) \log m(x) dx & ext{if } m ext{ is a.c. w.r.t. Lebesgue measure} \\ \infty & ext{otherwise} \end{cases}$$

Define

$$V^{\sigma}(m) := \int F(x)m(dx) + \frac{\sigma^2}{2}H(m),$$

where relative entropy H for $m \in \mathcal{P}(\mathbb{R}^d)$

$$H(m) := egin{cases} \int_{\mathbb{R}^d} m(x) \log m(x) dx & ext{if } m ext{ is a.c. w.r.t. Lebesgue measure} \\ \infty & ext{otherwise} \end{cases}$$

Let $b: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ be a vector field and consider gradient flow (we take b so that PDE is well defined)

$$\partial_t \nu_t = \operatorname{div}(b_t \nu_t)$$

Define

$$V^{\sigma}(m) := \int F(x)m(dx) + \frac{\sigma^2}{2}H(m),$$

where relative entropy H for $m \in \mathcal{P}(\mathbb{R}^d)$

$$H(m) := egin{cases} \int_{\mathbb{R}^d} m(x) \log m(x) dx & ext{if } m ext{ is a.c. w.r.t. Lebesgue measure} \\ \infty & ext{otherwise} \end{cases}$$

Let $b: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ be a vector field and consider gradient flow (we take b so that PDE is well defined)

$$\partial_t \nu_t = \operatorname{div}(b_t \nu_t)$$

For $\epsilon, \lambda > 0$ let $\nu_t^{\lambda, \epsilon} := \nu_t + \lambda(\nu_{t+\epsilon} - \nu_t)$ we have

$$\begin{split} \partial_t V^{\sigma}(\nu_t) &= \lim_{\epsilon \to 0} \epsilon^{-1} \left(V^{\sigma}(\nu_{t+\epsilon}) - V^{\sigma}(\nu_t) \right) \\ &= \lim_{\epsilon \to 0} \epsilon^{-1} \left(\int_0^1 \int \frac{\delta V^{\sigma}}{\delta \nu} (\nu_t^{\lambda, \epsilon}, y) (\nu_{t+\epsilon} - \nu_t) (dy) d\lambda \right) \end{split}$$

▶ For $\epsilon, \lambda > 0$ let $\nu_t^{\lambda, \epsilon} := \nu_t + \lambda(\nu_{t+\epsilon} - \nu_t)$ we have

$$\begin{split} \partial_t V^{\sigma}(\nu_t) &= \lim_{\epsilon \to 0} \epsilon^{-1} \left(V^{\sigma}(\nu_{t+\epsilon}) - V^{\sigma}(\nu_t) \right) \\ &= \lim_{\epsilon \to 0} \epsilon^{-1} \left(\int_0^1 \int \frac{\delta V^{\sigma}}{\delta \nu} (\nu_t^{\lambda, \epsilon}, y) (\nu_{t+\epsilon} - \nu_t) (dy) d\lambda \right) \end{split}$$

Note that $\nu_t^{\lambda,\epsilon} \to \nu_t$ as $\epsilon \to 0$ hence

$$\begin{aligned} \partial_t V^{\sigma}(\nu_t) &= \int \frac{\delta V^{\sigma}}{\delta \nu} (\nu_t, y) \partial_t \nu_t(dy) = \int \frac{\delta V^{\sigma}}{\delta \nu} (\nu_t, y) \mathrm{div}(b_t \nu_t)(dy) \\ &= -\int \left(\nabla_y \frac{\delta V^{\sigma}}{\delta \nu} \right) (\nu_t, y) b_t \nu_t(dy) \end{aligned}$$

▶ For $\epsilon, \lambda > 0$ let $\nu_t^{\lambda, \epsilon} := \nu_t + \lambda(\nu_{t+\epsilon} - \nu_t)$ we have

$$\begin{split} \partial_t V^{\sigma}(\nu_t) &= \lim_{\epsilon \to 0} \epsilon^{-1} \left(V^{\sigma}(\nu_{t+\epsilon}) - V^{\sigma}(\nu_t) \right) \\ &= \lim_{\epsilon \to 0} \epsilon^{-1} \left(\int_0^1 \int \frac{\delta V^{\sigma}}{\delta \nu} (\nu_t^{\lambda, \epsilon}, y) (\nu_{t+\epsilon} - \nu_t) (dy) d\lambda \right) \end{split}$$

Note that $\nu_t^{\lambda,\epsilon} \to \nu_t$ as $\epsilon \to 0$ hence

$$\begin{aligned} \partial_t V^{\sigma}(\nu_t) &= \int \frac{\delta V^{\sigma}}{\delta \nu} (\nu_t, y) \partial_t \nu_t(dy) = \int \frac{\delta V^{\sigma}}{\delta \nu} (\nu_t, y) \mathrm{div}(b_t \nu_t)(dy) \\ &= -\int \left(\nabla_y \frac{\delta V^{\sigma}}{\delta \nu} \right) (\nu_t, y) b_t \nu_t(dy) \end{aligned}$$

▶ To have $V^{\sigma}(\nu_t) \setminus$ take

$$b_t(y) := \left(
abla_y rac{\delta V^{\sigma}}{\delta
u}
ight) (
u_t, y)$$

• Recall that $V^{\sigma}(m) = (F, m) + \frac{\sigma^2}{2}(\log m, m)$

$$rac{\delta V^{\sigma}}{\delta m}(m,y) = F(y) + rac{\sigma^2}{2}(\log m(y) + 1)$$
 $b_t(y) = \left(\nabla_y rac{\delta V^{\sigma}}{\delta m}\right)(m,y) = (\nabla_y F)(y) + rac{\sigma^2}{2}\nabla_y \log(m(y))$

Recall that $V^{\sigma}(m) = (F, m) + \frac{\sigma^2}{2}(\log m, m)$ $\frac{\delta V^{\sigma}}{\delta m}(m, y) = F(y) + \frac{\sigma^2}{2}(\log m(y) + 1)$ $b_t(y) = \left(\nabla_y \frac{\delta V^{\sigma}}{\delta m}\right)(m, y) = (\nabla_y F)(y) + \frac{\sigma^2}{2}\nabla_y \log(m(y))$

Plug this back into the gradient flow equation

$$\partial_t \nu_t = \operatorname{div}\left(\left((\nabla F) + \frac{\sigma^2}{2} \nabla \log(\nu_t)\right) \nu_t\right)$$
$$\partial_t \nu_t = \operatorname{div}\left((\nabla F) \nu_t\right) + \frac{\sigma^2}{2} \Delta \nu_t$$

Variational perspective

Recall that $V^{\sigma}(m) = (F, m) + \frac{\sigma^2}{2}(\log m, m)$ $\frac{\delta V^{\sigma}}{\delta m}(m, y) = F(y) + \frac{\sigma^2}{2}(\log m(y) + 1)$ $b_t(y) = \left(\nabla_y \frac{\delta V^{\sigma}}{\delta m}\right)(m, y) = (\nabla_y F)(y) + \frac{\sigma^2}{2}\nabla_y \log(m(y))$

▶ Plug this back into the gradient flow equation

$$\partial_t \nu_t = \operatorname{div}\left(\left((\nabla F) + \frac{\sigma^2}{2} \nabla \log(\nu_t)\right) \nu_t\right)$$
$$\partial_t \nu_t = \operatorname{div}\left((\nabla F) \nu_t\right) + \frac{\sigma^2}{2} \Delta \nu_t$$

▶ What is a minimiser of V^{σ} ? Note V^{σ} is strictly convex hence the first order condition

$$\frac{\delta V^{\sigma}}{\delta m}(m, y) = F(y) + \frac{\sigma^2}{2}(\log m(y) + 1) = const$$

Variational perspective

• Recall that $V^{\sigma}(m) = (F, m) + \frac{\sigma^2}{2}(\log m, m)$

$$\frac{\delta V^{\sigma}}{\delta m}(m, y) = F(y) + \frac{\sigma^{2}}{2}(\log m(y) + 1)$$

$$b_{t}(y) = \left(\nabla_{y} \frac{\delta V^{\sigma}}{\delta m}\right)(m, y) = (\nabla_{y} F)(y) + \frac{\sigma^{2}}{2}\nabla_{y} \log(m(y))$$

Plug this back into the gradient flow equation

$$egin{aligned} \partial_t
u_t &= \operatorname{div} \left(\left((
abla F) + rac{\sigma^2}{2}
abla \log(
u_t)
ight)
u_t \end{aligned}$$
 $\partial_t
u_t &= \operatorname{div} \left((
abla F)
u_t
ight) + rac{\sigma^2}{2}
abla
u_t \end{aligned}$

▶ What is a minimiser of V^{σ} ? Note V^{σ} is strictly convex hence the first order condition

$$\frac{\delta V^{\sigma}}{\delta m}(m, y) = F(y) + \frac{\sigma^2}{2}(\log m(y) + 1) = const$$

$$m(y) = e^{-rac{2}{\sigma^2}F(y)} \cdot const$$

One hidden layer neural network

Consider network

$$\frac{1}{n}\sum_{i=1}^n \beta_{n,i}\varphi(\alpha_{n,i}\cdot z) = \int_{\mathbb{R}^d} \beta\varphi(\alpha\cdot z)\,m^n(\mathrm{d}\beta,\mathrm{d}\alpha)\,.$$

Consider network

$$\frac{1}{n}\sum_{i=1}^n \beta_{n,i}\varphi(\alpha_{n,i}\cdot z) = \int_{\mathbb{R}^d} \beta\varphi(\alpha\cdot z)\,m^n(\mathrm{d}\beta,\mathrm{d}\alpha)\,.$$

▶ Denote $\hat{\varphi}(x,z) = \beta \varphi(\alpha \cdot z)$ for $x = (\alpha, \beta) \in \mathbb{R}^{p \times n}$, we should minimize,

$$x \mapsto \underbrace{\int_{\mathbb{R} \times \mathbb{R}^D} \Phi\left(y - \frac{1}{n} \sum_{i=1}^n \hat{\varphi}(x^i, z)\right) \nu(dy, dz)}_{=:F(x)} + \frac{\sigma^2}{2} \underbrace{|x|^2}_{=:U(x)},$$

which is non-convex.

Consider network

$$\frac{1}{n}\sum_{i=1}^n \beta_{n,i}\varphi(\alpha_{n,i}\cdot z) = \int_{\mathbb{R}^d} \beta\varphi(\alpha\cdot z)\,m^n(\mathrm{d}\beta,\mathrm{d}\alpha)\,.$$

▶ Denote $\hat{\varphi}(x,z) = \beta \varphi(\alpha \cdot z)$ for $x = (\alpha, \beta) \in \mathbb{R}^{p \times n}$, we should minimize,

$$x \mapsto \underbrace{\int_{\mathbb{R} \times \mathbb{R}^D} \Phi\left(y - \frac{1}{n} \sum_{i=1}^n \hat{\varphi}(x^i, z)\right) \nu(dy, dz)}_{=:F(x)} + \frac{\sigma^2}{2} \underbrace{|x|^2}_{=:U(x)},$$

which is non-convex.

▶ Gradient descent with learning rate $\tau > 0$:

$$x_{k+1}^{i} = x_{k}^{i} - \tau \nabla_{x^{i}} \left[F(x_{k}) + \frac{\sigma^{2}}{2} U(x_{k})^{2} \right], \quad i = 1, \ldots, n.$$

Here $x^i = (\alpha^i, \beta^i) \in \mathbb{R} \times \mathbb{R}^D$.

Consider network

$$\frac{1}{n}\sum_{i=1}^n\beta_{n,i}\varphi(\alpha_{n,i}\cdot z)=\int_{\mathbb{R}^d}\beta\varphi(\alpha\cdot z)\,m^n(\mathrm{d}\beta,\mathrm{d}\alpha)\,.$$

▶ Denote $\hat{\varphi}(x,z) = \beta \varphi(\alpha \cdot z)$ for $x = (\alpha, \beta) \in \mathbb{R}^{p \times n}$, we should minimize,

$$x \mapsto \underbrace{\int_{\mathbb{R} \times \mathbb{R}^D} \Phi\left(y - \frac{1}{n} \sum_{i=1}^n \hat{\varphi}(x^i, z)\right) \nu(dy, dz)}_{=:F(x)} + \frac{\sigma^2}{2} \underbrace{|x|^2}_{=:U(x)},$$

which is non-convex.

▶ Gradient descent with learning rate $\tau > 0$:

$$x_{k+1}^{i} = x_{k}^{i} - \tau \nabla_{x^{i}} \left[F(x_{k}) + \frac{\sigma^{2}}{2} U(x_{k})^{2} \right], \quad i = 1, \ldots, n.$$

Here $x^i = (\alpha^i, \beta^i) \in \mathbb{R} \times \mathbb{R}^D$.

▶ No hope for deterministic gradient to find global minimum....

Approximation with gradient descent

In practice noisy (regularised), gradient descent algorithms are used:

$$\begin{aligned} x_{k+1}^i &= x_k^i + \tau \int_{\mathbb{R} \times \mathbb{R}^D} \dot{\Phi} \bigg(y - \frac{1}{n} \sum_{j=1}^n \hat{\varphi}(x_k^j, z) \bigg) \nabla_{x^i} \hat{\varphi}(x_k^i, z) \, \nu(dy, dz) \\ &- \frac{\bar{\sigma}^2}{2} \, \nabla_{x^i} U(x_k^i) + \sigma \sqrt{\tau} \xi_k^i \,, \end{aligned}$$

where ξ_k^i are i.i.d. samples from $N(0, I_d)$.

Approximation with gradient descent

In practice noisy (regularised), gradient descent algorithms are used:

$$\begin{aligned} x_{k+1}^i &= x_k^i + \tau \int_{\mathbb{R} \times \mathbb{R}^D} \dot{\Phi} \bigg(y - \frac{1}{n} \sum_{j=1}^n \hat{\varphi}(x_k^j, z) \bigg) \nabla_{x^i} \hat{\varphi}(x_k^i, z) \, \nu(dy, dz) \\ &- \frac{\bar{\sigma}^2}{2} \, \nabla_{x^i} U(x_k^i) + \sigma \sqrt{\tau} \xi_k^i \,, \end{aligned}$$

where ξ_k^i are i.i.d. samples from $N(0, I_d)$.

► Taking weak limit gives

$$\begin{split} dX_t^i = & \left[\int_{\mathbb{R} \times \mathbb{R}^D} \dot{\Phi} \bigg(y - \frac{1}{n} \sum_{j=1}^n \hat{\varphi}(X_t^j, z) \bigg) \nabla_{x^i} \hat{\varphi}(X_t^i, z) \, \nu(dy, dz) \right. \\ & \left. - \frac{\bar{\sigma}^2}{2} \, \nabla_{x^i} U(X_t^i) \right] dt + \sigma dW_t^i \,, \end{split}$$

Write

$$\frac{1}{n}\sum_{i=1}^n\hat{\varphi}(x^i,z)=\int_{\mathbb{R}^d}\hat{\varphi}(x,z)\,m^n(dx)\ \text{as}\ n\to\infty\,.$$

Write

$$\frac{1}{n}\sum_{i=1}^{n}\hat{\varphi}(x^{i},z)=\int_{\mathbb{R}^{d}}\hat{\varphi}(x,z)\,m^{n}(dx)\ \text{as}\ n\to\infty\,.$$

▶ The search for the optimal measure $m^* \in \mathcal{P}(\mathbb{R}^d)$ amounts to minimizing

$$\mathcal{P}(\mathbb{R}^d)\ni m\mapsto \int_{\mathbb{R} imes\mathbb{R}^D}\Phi\bigg(y-\int_{\mathbb{R}^d}\hat{\varphi}(x,z)\,m(dx)\bigg)
u(dy,dz)=:F(m),$$

Write

$$\frac{1}{n}\sum_{i=1}^{n}\hat{\varphi}(x^{i},z)=\int_{\mathbb{R}^{d}}\hat{\varphi}(x,z)\,m^{n}(dx)\ \text{as}\ n\to\infty\,.$$

▶ The search for the optimal measure $m^* \in \mathcal{P}(\mathbb{R}^d)$ amounts to minimizing

$$\mathcal{P}(\mathbb{R}^d)\ni m\mapsto \int_{\mathbb{R}\times\mathbb{R}^D}\Phi\bigg(y-\int_{\mathbb{R}^d}\hat{\varphi}(x,z)\,m(dx)\bigg)\nu(dy,dz)=:F(m),$$

which is convex (as long as Φ) i.e

$$F((1-\alpha)m + \alpha m') \le (1-\alpha)F(m) + \alpha F(m')$$
 for all $\alpha \in [0,1]$.

Write

$$\frac{1}{n}\sum_{i=1}^n\hat{\varphi}(x^i,z)=\int_{\mathbb{R}^d}\hat{\varphi}(x,z)\,m^n(dx)\ \text{as}\ n\to\infty\,.$$

lacktriangle The search for the optimal measure $m^*\in\mathcal{P}(\mathbb{R}^d)$ amounts to minimizing

$$\mathcal{P}(\mathbb{R}^d)\ni m\mapsto \int_{\mathbb{R}\times\mathbb{R}^D}\Phi\bigg(y-\int_{\mathbb{R}^d}\hat{\varphi}(x,z)\,m(dx)\bigg)\nu(dy,dz)=:F(m),$$

which is convex (as long as Φ) i.e

$$F((1-\alpha)m + \alpha m') \le (1-\alpha)F(m) + \alpha F(m')$$
 for all $\alpha \in [0,1]$.

▶ Observed in the pioneering works of Mei, Misiakiewicz and Montanari [Mei et al., 2018], Chizat and Bach [Chizat and Bach, 2018] as well as Rotskoff and Vanden-Eijnden [Rotskoff and Vanden-Eijnden, 2018].

Derivation of MFLD

 \blacktriangleright

$$F^N(x^1,\ldots,x^N) = F\left(\frac{1}{N}\sum_{i=1}^N \delta_{x^i}\right) = \int_{\mathbb{R}^d} \Phi\left(y - \frac{1}{N}\sum_{i=1}^N \hat{\varphi}(x^i,z)\right) \nu(\mathrm{d}z,\mathrm{d}y).$$

► Then

$$\mathrm{d}X_t^i = -\Big(\mathsf{N}\partial_{x_i}\mathsf{F}^\mathsf{N}(X_t^1,\ldots,X_t^\mathsf{N}) + rac{\sigma^2}{2}\,
abla U(X_t^i)\Big)\mathrm{d}t + \sigma\mathrm{d}W_t^i\,.$$

Derivation of MFLD

 \blacksquare

$$F^N(x^1,\ldots,x^N) = F\left(\frac{1}{N}\sum_{i=1}^N \delta_{x^i}\right) = \int_{\mathbb{R}^d} \Phi\left(y - \frac{1}{N}\sum_{j=1}^N \hat{\varphi}(x^j,z)\right) \nu(\mathrm{d}z,\mathrm{d}y).$$

► Then

$$\mathrm{d}X_t^i = -\Big(\mathsf{N}\partial_{x_i}\mathsf{F}^\mathsf{N}(X_t^1,\ldots,X_t^\mathsf{N}) + rac{\sigma^2}{2}\,
abla U(X_t^i)\Big)\mathrm{d}t + \sigma\mathrm{d}W_t^i\,.$$

▶ We expect to have, as $N \to \infty$,

$$egin{cases} dX_t = -\left(D_m F(m_t, X_t) + rac{\sigma^2}{2}
abla U(X_t)
ight) \, dt + \sigma dW_t \;\; t \in [0, \infty) \ m_t = ext{Law}(X_t) \;\; t \in [0, \infty) \,. \end{cases}$$

Derivation of MFLD

$$F^{N}(x^{1},\ldots,x^{N})=F\left(\frac{1}{N}\sum_{i=1}^{N}\delta_{x^{i}}\right)=\int_{\mathbb{R}^{d}}\Phi\left(y-\frac{1}{N}\sum_{j=1}^{N}\hat{\varphi}(x^{j},z)\right)\nu(\mathrm{d}z,\mathrm{d}y).$$

► Then

$$\mathrm{d}X^i_t = -\Big(\mathsf{N}\partial_{x_i}\mathsf{F}^\mathsf{N}(X^1_t,\ldots,X^N_t) + rac{\sigma^2}{2}\,
abla U(X^i_t)\Big)\mathrm{d}t + \sigma\mathrm{d}W^i_t\,.$$

▶ We expect to have, as $N \to \infty$,

$$egin{cases} dX_t = -\left(D_m F(m_t, X_t) + rac{\sigma^2}{2}
abla U(X_t)
ight) \, dt + \sigma dW_t \;\; t \in [0, \infty) \ m_t = \mathsf{Law}(X_t) \;\; t \in [0, \infty) \,. \end{cases}$$

Fokker–Planck

$$\partial_t m =
abla \cdot \left(\left(D_m F(m,\cdot) + rac{\sigma^2}{2}
abla U
ight) m + rac{\sigma^2}{2}
abla m
ight) ext{ on } (0,\infty) imes \mathbb{R}^d \,.$$

Energy functional - Variational Perspective

We want to minimise

$$V^{\sigma}(m) := F(m) + \frac{\sigma^2}{2}H(m),$$

where relative entropy H for $m \in \mathcal{P}(\mathbb{R}^d)$

$$H(m) := egin{cases} \int_{\mathbb{R}^d} m(x) \log \left(rac{m(x)}{g(x)}
ight) dx & ext{if } m ext{ is a.c. w.r.t. Lebesgue measure} \\ \infty & ext{otherwise} \end{cases}$$

and Gibbs measure g:

$$g(x) = e^{-U(x)}$$
 with U s.t. $\int_{\mathbb{R}^d} e^{-U(x)} dx = 1$.

► Mean field Langevin Dynamics

$$dX_t = -\left(D_m(m_t, X_t) + \frac{\sigma^2}{2}\nabla U(X_t)\right) dt + \sigma dW_t \ \ t \in [0, \infty).$$

 \triangleright U gives contraction, W smooths the law

Assumptions I

Assumption 3

 $F \in \mathcal{C}^1$ is convex and bounded from below.

Assumption 4

The function $U: \mathbb{R}^d \to \mathbb{R}$ belongs to C^{∞} . Further,

i) there exist constants $C_U > 0$ and $C_U' \in \mathbb{R}$ such that

$$\nabla U(x) \cdot x \ge C_U |x|^2 + C_U'$$
 for all $x \in \mathbb{R}^d$.

ii) ∇U is Lipschitz continuous.

Convergence when $\sigma \searrow 0$

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the sequence of functions $V^{\sigma}=F+\frac{\sigma^2}{2}H$ converges in the sense of Γ -convergence to F as $\sigma \searrow 0$. In particular, given a minimizer $m^{*,\sigma}$ of V^{σ} , we have

$$\limsup_{\sigma \to 0} F(m^{*,\sigma}) = \inf_{m \in \mathcal{P}_2(\mathbb{R}^d)} F(m).$$

Convergence when $\sigma \searrow 0$

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the sequence of functions $V^{\sigma}=F+\frac{\sigma^2}{2}H$ converges in the sense of Γ -convergence to F as $\sigma \searrow 0$. In particular, given a minimizer $m^{*,\sigma}$ of V^{σ} , we have

$$\limsup_{\sigma \to 0} F(m^{*,\sigma}) = \inf_{m \in \mathcal{P}_2(\mathbb{R}^d)} F(m).$$

Proof outline: Let $f_n: X \to \mathbb{R}$. Recall that f_n Γ -converge to f, if

- ▶ for every sequence $x_n \to x$ $f(x) \le \liminf_{n\to\infty} f_n(x_n)$:
- ▶ for every $x \in X$, there is a sequence x_n converging to x such that $f(x) \ge \limsup_{n \to \infty} f_n(x_n)$:

Convergence when $\sigma \searrow 0$

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the sequence of functions $V^{\sigma}=F+\frac{\sigma^2}{2}H$ converges in the sense of Γ -convergence to F as $\sigma \searrow 0$. In particular, given a minimizer $m^{*,\sigma}$ of V^{σ} , we have

$$\limsup_{\sigma \to 0} F(m^{*,\sigma}) = \inf_{m \in \mathcal{P}_2(\mathbb{R}^d)} F(m).$$

Proof outline: Let $f_n: X \to \mathbb{R}$. Recall that f_n Γ -converge to f, if

- ▶ for every sequence $x_n \to x$ $f(x) \le \liminf_{n\to\infty} f_n(x_n)$:
- ▶ for every $x \in X$, there is a sequence x_n converging to x such that $f(x) \ge \limsup_{n \to \infty} f_n(x_n)$:
- ▶ To get $\liminf_{\sigma_n \to 0} V^{\sigma_n}(m_n) \ge F(m)$ use l.s.c. of entropy.
- ▶ To get $\limsup_{\sigma_n \to 0} V^{\sigma_n}(m_n) \leq F(m)$ smooth with heat kernel

Characterization of the minimizer

Proposition 6

Under Assumption 3 and 4, the function V^{σ} has a unique minimizer $m^* \in \mathcal{P}_2(\mathbb{R}^d)$ which is absolutely continuous with respect to Lebesgue measure. Moreover, $m^* = \arg\min_{m \in \mathcal{P}(\mathbb{R}^d)} V^{\sigma}$ iff

$$\frac{\delta F}{\delta m}(m^*, \cdot) + \frac{\sigma^2}{2}\log(m^*) + \frac{\sigma^2}{2}U$$
 is a constant, Leb – a.s,

or equivalently

$$m^{\star}(x) = \frac{1}{Z} e^{-\frac{2}{\sigma^2} \frac{\delta F}{\delta m}(m^*, x)} g(x)$$

Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the entropy are compact so consider, for some fixed \bar{m} s.t. $V(\bar{m}) < \infty$,

$$\mathcal{S}:=\left\{m:\frac{\sigma^2}{2}H(m)\leq V^{\sigma}(\bar{m})-\inf_{m'\in\mathcal{P}(\mathbb{R}^d)}F(m')\right\}.$$

Since V^{σ} is l.s.c. it attains its minimum on \mathcal{S} , say m^* so $V^{\sigma}(m^*) \leq V^{\sigma}(m)$ for all $m \in \mathcal{S}$.

Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the entropy are compact so consider, for some fixed \bar{m} s.t. $V(\bar{m}) < \infty$,

$$\mathcal{S}:=\left\{m:\frac{\sigma^2}{2}H(m)\leq V^{\sigma}(\bar{m})-\inf_{m'\in\mathcal{P}(\mathbb{R}^d)}F(m')\right\}.$$

Since V^{σ} is l.s.c. it attains its minimum on \mathcal{S} , say m^* so $V^{\sigma}(m^*) \leq V^{\sigma}(m)$ for all $m \in \mathcal{S}$.

If $m \notin \mathcal{S}$ then

$$V^{\sigma}(m^*) \leq V^{\sigma}(\bar{m}) \leq \frac{\sigma^2}{2}H(m) + \inf_{m' \in \mathcal{P}(\mathbb{R}^d)}F(m') \leq V^{\sigma}(m)$$

so m^* is global minimum of V. Since V is strictly convex it is unique.

Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the entropy are compact so consider, for some fixed \bar{m} s.t. $V(\bar{m}) < \infty$,

$$\mathcal{S}:=\left\{m:\frac{\sigma^2}{2}H(m)\leq V^{\sigma}(\bar{m})-\inf_{m'\in\mathcal{P}(\mathbb{R}^d)}F(m')\right\}.$$

Since V^{σ} is l.s.c. it attains its minimum on \mathcal{S} , say m^* so $V^{\sigma}(m^*) \leq V^{\sigma}(m)$ for all $m \in \mathcal{S}$.

If $m \notin \mathcal{S}$ then

$$V^{\sigma}(m^*) \leq V^{\sigma}(\bar{m}) \leq \frac{\sigma^2}{2}H(m) + \inf_{m' \in \mathcal{P}(\mathbb{R}^d)}F(m') \leq V^{\sigma}(m)$$

so m^* is global minimum of V. Since V is strictly convex it is unique.

Step 2 (sufficient condition): Assume m^* satisfies first order condition then for any $\varepsilon>0$ and $m\in\mathcal{P}(\mathbb{R}^d)$ we have

$$\begin{split} V^{\sigma}(m) - V^{\sigma}(m^{*}) &\geq \frac{V^{\sigma}((1-\varepsilon)m^{*} + \varepsilon m) - V^{\sigma}(m^{*})}{\varepsilon} \\ &\geq \int_{\mathbb{R}^{d}} \left(\frac{\delta F}{\delta m}(m^{*}, \cdot) + \frac{\sigma^{2}}{2} \log m^{*} + \frac{\sigma^{2}}{2} U\right) (m - m^{*})(dx) = 0 \,. \end{split}$$

Connection to gradient flow

Recall

$$\partial_t m =
abla \cdot \left(\left(D_m F(m,\cdot) + rac{\sigma^2}{2}
abla U
ight) m + rac{\sigma^2}{2}
abla m
ight) ext{ on } (0,\infty) imes \mathbb{R}^d \, ,$$

Connection to gradient flow

Recall

$$\partial_t m =
abla \cdot \left(\left(D_m F(m,\cdot) + rac{\sigma^2}{2}
abla U
ight) m + rac{\sigma^2}{2}
abla m
ight) ext{ on } (0,\infty) imes \mathbb{R}^d \, ,$$

▶ If m^{*} is such that

$$\frac{\delta F}{\delta m}(m^*,\cdot) + \frac{\sigma^2}{2}\log(m^*) + \frac{\sigma^2}{2}U \text{ is a constant, } m^* - a.s.$$

Connection to gradient flow

Recall

$$\partial_t m =
abla \cdot \left(\left(D_m F(m,\cdot) + rac{\sigma^2}{2}
abla U
ight) m + rac{\sigma^2}{2}
abla m
ight) ext{ on } (0,\infty) imes \mathbb{R}^d \, ,$$

▶ If m^{*} is such that

$$\frac{\delta F}{\delta m}(m^*,\cdot) + \frac{\sigma^2}{2}\log(m^*) + \frac{\sigma^2}{2}U$$
 is a constant, $m^* - a.s.$

▶ Then m^* is a stationary solution of gradient flow PDE

$$\nabla \cdot \left(\left(D_m F(m^*, \cdot) + \frac{\sigma^2}{2} \nabla U \right) m^* + \frac{\sigma^2}{2} \nabla m^* \right) = 0$$

Mean-field Langevin equation

We see that if

$$egin{cases} dX_t = -\left(D_m F(m_t, X_t) + rac{\sigma^2}{2}
abla U(X_t)
ight) \, dt + \sigma dW_t \;\; t \in [0, \infty) \ m_t = \mathsf{Law}(X_t) \;\; t \in [0, \infty) \end{cases}$$

has a solution then $(m_t)_{t\geq 0}$ solves the Fokker–Planck equation

$$\partial_t m =
abla \cdot \left(\left(D_m F(m,\cdot) + rac{\sigma^2}{2}
abla U
ight) m + rac{\sigma^2}{2}
abla m
ight) ext{ on } (0,\infty) imes \mathbb{R}^d \, .$$

Mean-field Langevin equation

We see that if

$$egin{cases} dX_t = -\left(D_m F(m_t, X_t) + rac{\sigma^2}{2}
abla U(X_t)
ight) \, dt + \sigma dW_t \;\; t \in [0, \infty) \ m_t = ext{Law}(X_t) \;\; t \in [0, \infty) \end{cases}$$

has a solution then $(m_t)_{t>0}$ solves the Fokker–Planck equation

$$\partial_t m =
abla \cdot \left(\left(D_m F(m,\cdot) + rac{\sigma^2}{2}
abla U
ight) m + rac{\sigma^2}{2}
abla m
ight) ext{ on } (0,\infty) imes \mathbb{R}^d \,.$$

Key challenges in studying invariant measure(s)

- ▶ Drift not of convolutional form [Carrillo et al., 2003] Otto [Otto, 2001], [Tugaut et al., 2013]
- ▶ To establish Γ convergence need result to hold for all σ , so works of [Bogachev et al., 2019] and [Eberle et al., 2019] do not apply.

Assumptions II

Assumption 7

Assume that the intrinsic derivative $D_mF: \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}^d$ of the function $F: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ exists and satisfies the following conditions:

i) D_mF is bounded and Lipschitz continuous, i.e. there exists $C_F > 0$ such that for all $x, x \in \mathbb{R}^d$ and $m, m' \in \mathcal{P}_2(\mathbb{R}^d)$

$$|D_mF(m,x)-D_mF(m',x')|\leq C_F\big(|x-x'|+\mathcal{W}_2(m,m')\big)\,.$$

- ii) $D_m F(m, \cdot) \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ for all $m \in \mathcal{P}(\mathbb{R}^d)$.
- iii) $\nabla D_m F: \mathcal{P}(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$ is jointly continuous.

Energy Dissipation

Theorem 2

Let $m_0 \in \mathcal{P}_2(\mathbb{R}^d)$. Under Assumption 4 and 7, we have for any t > s > 0

$$\begin{split} &V^{\sigma}(m_t) - V^{\sigma}(m_s) \\ &= -\int_s^t \int_{\mathbb{R}^d} \left| D_m F(m_r, x) + \frac{\sigma^2}{2} \frac{\nabla m_r}{m_r}(x) + \frac{\sigma^2}{2} \nabla U(x) \right|^2 m_r(x) \, dx \, dr. \end{split}$$

Energy Dissipation

Theorem 2

Let $m_0 \in \mathcal{P}_2(\mathbb{R}^d)$. Under Assumption 4 and 7, we have for any t > s > 0

$$\begin{split} V^{\sigma}(m_t) - V^{\sigma}(m_s) \\ &= -\int_s^t \int_{\mathbb{R}^d} \left| D_m F(m_r, x) + \frac{\sigma^2}{2} \frac{\nabla m_r}{m_r}(x) + \frac{\sigma^2}{2} \nabla U(x) \right|^2 m_r(x) \, dx \, dr. \end{split}$$

Proof outline: Follows from a priori estimates and regularity results on the nonlinear Fokker–Planck equation and the chain rule for flows of measures.

Convergence

Theorem 3

Let Assumption 3, 4 and 7 hold true and $m_0 \in \cup_{p>2} \mathcal{P}_p(\mathbb{R}^d)$. Denote by $(m_t)_{t\geq 0}$ the flow of marginal laws of the solution to MFLD. Then, there exists an invariant measure of of MFLD equal to $m^* := \operatorname{argmin}_m V^{\sigma}(m)$ and

$$\mathcal{W}_2(\textit{m}_t, \textit{m}^*) \rightarrow 0 \;\; \textit{as} \;\; t \rightarrow \infty \,.$$

Convergence

Theorem 3

Let Assumption 3, 4 and 7 hold true and $m_0 \in \bigcup_{p>2} \mathcal{P}_p(\mathbb{R}^d)$. Denote by $(m_t)_{t\geq 0}$ the flow of marginal laws of the solution to MFLD. Then, there exists an invariant measure of of MFLD equal to $m^* := \operatorname{argmin}_m V^{\sigma}(m)$ and

$$\mathcal{W}_2(\textit{m}_t, \textit{m}^*)
ightarrow 0 \ \textit{as} \ t
ightarrow \infty$$
 .

If V was continuous then result would follow from tightness of $(m_t)_{t\geq 0}$ and Theorem 2. The entropy is only l.s.c.

Proof key ingredients: Tightness of $(m_t)_{t\geq 0}$, Lasalle's invariance principle, Theorem 2, HWI inequality.

Convergence, step 1: invariance

Let $S(t)[m_0] := m_t$, marginals of solution to MFLD started from m_0 .

Define ω -limit set

$$\omega(m_0) := \left\{ \mu \in \mathcal{P}_2(\mathbb{R}^d) : \exists (t_n)_{n \in \mathbb{N}} \text{ s.t. } \mathcal{W}_2(m_{t_n}, \mu) o 0 \text{ as } n o \infty
ight\}.$$

Then

- i) $\omega(m_0)$ is nonempty and compact (since for any $t \ge 0$, $(m_s)_{s \ge t}$ is relatively compact, $w(m_0) = \bigcap_{t \ge 0} \overline{(m_s)_{s \ge t}}$),
- ii) if $\mu \in \omega(m_0)$ then $S(t)[\mu] \in \omega(m_0)$ for all $t \ge 0$,
- iii) if $\mu \in \omega(m_0)$ then for any $t \geq 0$ there exists μ' s.t. $S(t)[\mu'] = \mu$.

Prove that $m^\star \in \omega(m_0)$

Prove that $m^{\star} \in \omega(m_0)$

Since $\omega(m_0)$ is compact, there is $\tilde{m} \in \operatorname{argmin}_{m \in \omega(m_0)} V(m)$.

Prove that $m^* \in \omega(m_0)$

Since $\omega(m_0)$ is compact, there is $\tilde{m} \in \operatorname{argmin}_{m \in \omega(m_0)} V(m)$.

from iii) $\forall t>0$ there is μ s.t. $S(t)[\mu]=\tilde{m}$ and by Theorem 2 for any s>0 we get

$$V(S(t+s)[\mu]) \leq V(S(t)[\mu]) = V(\tilde{m}).$$

Prove that $m^{\star} \in \omega(m_0)$

Since $\omega(m_0)$ is compact, there is $\tilde{m} \in \operatorname{argmin}_{m \in \omega(m_0)} V(m)$.

from iii) $\forall t>0$ there is μ s.t. $S(t)[\mu]=\tilde{m}$ and by Theorem 2 for any s>0 we get

$$V(S(t+s)[\mu]) \leq V(S(t)[\mu]) = V(\tilde{m}).$$

from ii) (invariance) $S(t+s)[\mu] \in \omega(m_0)$ so $V(S(t+s)[\mu]) \geq V(\tilde{m})$ (definition of \tilde{m}).

Prove that $m^{\star} \in \omega(m_0)$

Since $\omega(m_0)$ is compact, there is $\tilde{m} \in \operatorname{argmin}_{m \in \omega(m_0)} V(m)$.

from iii) $\forall t>0$ there is μ s.t. $S(t)[\mu]=\tilde{m}$ and by Theorem 2 for any s>0 we get

$$V(S(t+s)[\mu]) \leq V(S(t)[\mu]) = V(\tilde{m}).$$

from ii) (invariance) $S(t+s)[\mu] \in \omega(m_0)$ so $V(S(t+s)[\mu]) \geq V(\tilde{m})$ (definition of \tilde{m}).

By Theorem 2

$$0 = \frac{dV(S(t)[\mu])}{dt} = -\int_{\mathbb{R}^d} \left| D_m F(\tilde{m}, x) + \frac{\sigma^2}{2} \frac{\nabla \tilde{m}}{\tilde{m}}(x) + \frac{\sigma^2}{2} \nabla U(x) \right|^2 \tilde{m}(x) dx.$$

Due to the first order condition (Proposition 6) get $\tilde{m} = m^*$.

$$m^{\star} \in \omega(m_0) \implies \exists (m_{t_n}) \to m^{\star}$$

$$m^{\star} \in \omega(m_0) \implies \exists (m_{t_n}) \to m^{\star}$$

We want to show that if $m_{t_n} \to m^*$ then $V^\sigma(m_{t_n}) \to V^\sigma(m^*)$.

$$m^* \in \omega(m_0) \implies \exists (m_{t_n}) \to m^*$$
 We want to show that if $m_{t_n} \to m^*$ then $V^\sigma(m_{t_n}) \to V^\sigma(m^*)$. But $V = F + \frac{\sigma^2}{2}H$ and H only l.s.c. So we need to show that
$$\int_{\mathbb{R}^d} m^* \log(m^*) \, dx \ge \limsup_{n \to \infty} \int_{\mathbb{R}^d} m_{t_n} \log(m_{t_n}) \, dx \, .$$

Convergence, step 2: HWI inequality [Otto and Villani, 2000]

Assume that $\nu(dx)=e^{-\Psi(x)}(dx)$ is a $\mathcal{P}_2(\mathbb{R}^d)$ measure s.t. $\Psi\in C^2(\mathbb{R}^d)$, there is $K\in\mathbb{R}$ s.t. $\partial_{xx}\Psi\geq KI_d$. Then for any $\mu\in\mathcal{P}(\mathbb{R}^d)$ absolutely continuous w.r.t. ν we have

$$H(\mu|
u) \leq \mathcal{W}_2(\mu,
u) \left(\sqrt{I(\mu|
u)} - rac{K}{2} \mathcal{W}_2(\mu,
u)
ight) \, ,$$

where *I* is the Fisher information:

$$I(\mu|\nu) := \int_{\mathbb{R}^d} \left| \nabla \log \frac{d\mu}{d\nu}(x) \right|^2 \mu(dx).$$

We thus have

$$\int_{\mathbb{R}^d} m_{t_n} \Big(\log(m_{t_n}) - \log(m^*) \Big) \, dx \leq \mathcal{W}_2(m_{t_n}, m^*) \Big(\sqrt{I_n} + C \mathcal{W}_2(m_{t_n}, m^*) \Big),$$

with

$$I_n := \mathbb{E}\left[\left|
abla \log\left(m_{t_n}(X_{t_n})
ight) -
abla \log\left(m^*(X_{t_n})
ight)
ight|^2
ight]\,.$$

We thus have

$$\int_{\mathbb{R}^d} m_{t_n} \Big(\log(m_{t_n}) - \log(m^*) \Big) \, dx \leq \mathcal{W}_2(m_{t_n}, m^*) \Big(\sqrt{I_n} + C \mathcal{W}_2(m_{t_n}, m^*) \Big),$$

with

$$I_n := \mathbb{E}\left[\left|
abla \log\left(m_{t_n}(X_{t_n})
ight) -
abla \log\left(m^*(X_{t_n})
ight)
ight|^2
ight]\,.$$

Need to show $\sup_n I_n < \infty$ (estimate on Malliavin derivative of the change of measure exponential).

Convergence, step 3

Have $m_{t_n} \to m^*$ for some $t_n \to \infty$. Moreover $t \mapsto V(m_t)$ is non-increasing in t so there is $c := \lim_{n \to \infty} V(t_n)$.

Use uniqueness of m^* and step 2 to show that any other sequence $V(m_{t_{n'}})$ converges to the same c, $\omega(m_0) = \{m^*\}$, so $\mathcal{W}_2(m_t, m^*) \to 0$.

Exponential convergence

Theorem 4

If σ is sufficiently large, there exists $\lambda > 0$ s.t

$$\mathcal{W}_2(m_t, m^*) \leq e^{-\lambda t} \mathcal{W}_2(m_0, m^*)$$
.

Proof see: [Eberle et al., 2019], [Hu et al., 2019a]

New perspective on Lazy training paradigm.

References I

- [Belkin et al., 2018] Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2018). Reconciling modern machine learning and the bias-variance trade-off. arXiv preprint arXiv:1812.11118.
- [Bogachev et al., 2019] Bogachev, V., Röckner, M., and Shaposhnikov, S. (2019). On convergence to stationary distributions for solutions of nonlinear fokker-planck-kolmogorov equations. *Journal of Mathematical Sciences*, 242(1):69–84.
- [Cardaliaguet et al., 2015] Cardaliaguet, P., Delarue, F., Lasry, J.-M., and Lions, P.-L. (2015). The master equation and the convergence problem in mean field games. arXiv preprint arXiv:1509.02505.
- [Carrillo et al., 2003] Carrillo, J. A., McCann, R. J., Villani, C., et al. (2003). Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Revista Matematica Iberoamericana, 19(3):971–1018.
- [Chizat and Bach, 2018] Chizat, L. and Bach, F. (2018). On the global convergence of gradient descent for over-parameterized models using optimal transport. In Advances in neural information processing systems, pages 3040–3050.
- [Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303–314.
- [Eberle et al., 2019] Eberle, A., Guillin, A., and Zimmer, R. (2019). Quantitative harris-type theorems for diffusions and mckean-vlasov processes. Transactions of the American Mathematical Society, 371(10):7135–7173.
- [Gierjatowicz et al., 2020] Gierjatowicz, P., Sabate-Vidales, M., Siska, D., Szpruch, L., and Zuric, Z. (2020). Robust pricing and hedging via neural sdes. *Available at SSRN 3646241*.
- [Heiss et al., 2019] Heiss, J., Teichmann, J., and Wutte, H. (2019). How implicit regularization of neural networks affects the learned function—part i. arXiv preprint arXiv:1911.02903.
- [Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. *Neural Networks*, 4(2):251–257.
- [Hu et al., 2019a] Hu, K., Kazeykina, A., and Ren, Z. (2019a). Mean-field langevin system, optimal control and deep neural networks. arXiv preprint arXiv:1909.07278.

References II

- [Hu et al., 2019b] Hu, K., Ren, Z., Siska, D., and Szpruch, L. (2019b). Mean-field langevin dynamics and energy landscape of neural networks. arXiv preprint arXiv:1905.07769.
- [Hwang, 1980] Hwang, C.-R. (1980). Laplace's method revisited: weak convergence of probability measures. The Annals of Probability, pages 1177–1182.
- [Jabir et al., 2019] Jabir, J.-F., Šiška, D., and Szpruch, Ł. (2019). Mean-field neural odes via relaxed optimal control. arXiv preprint arXiv:1912.05475.
- [Ma et al., 2019] Ma, C., Wu, L., et al. (2019). Barron spaces and the compositional function spaces for neural network models. arXiv preprint arXiv:1906.08039.
- [Mei and Montanari, 2019] Mei, S. and Montanari, A. (2019). The generalization error of random features regression: Precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355.
- [Mei et al., 2018] Mei, S., Montanari, A., and Nguyen, P.-M. (2018). A mean field view of the landscape of two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671.
- [Neyshabur et al., 2017] Neyshabur, B., Tomioka, R., Salakhutdinov, R., and Srebro, N. (2017). Geometry of optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071.
- [Otto, 2001] Otto, F. (2001). The geometry of dissipative evolution equations: the porous medium equation.
- [Otto and Villani, 2000] Otto, F. and Villani, C. (2000). Generalization of an inequality by talagrand and links with the logarithmic sobolev inequality. *Journal of Functional Analysis*, 173:361–400.
- [Rotskoff and Vanden-Eijnden, 2018] Rotskoff, G. M. and Vanden-Eijnden, E. (2018). Neural networks as interacting particle systems: Asymptotic convexity of the loss landscape and universal scaling of the approximation error. arXiv:1805.00915.
- [Schmidt-Hieber et al., 2020] Schmidt-Hieber, J. et al. (2020). Nonparametric regression using deep neural networks with relu activation function. *Annals of Statistics*, 48(4):1875–1897.
- [Šiška and Szpruch, 2020] Šiška, D. and Szpruch, Ł. (2020). Gradient flows for regularized stochastic control problems. arXiv preprint arXiv:2006.05956.

References III

- [Tugaut et al., 2013] Tugaut, J. et al. (2013). Convergence to the equilibria for self-stabilizing processes in double-well landscape. *The Annals of Probability*, 41(3A):1427–1460.
- [Vidales et al., 2018] Vidales, M. S., Šiška, D., and Szpruch, L. (2018). Martingale functional control variates via deep learning. arXiv:1810.05094.