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Outline

Sampling vs optimisation on R?

Mean-Field Langevin Dynamics - training of one hidden layer neural
network viewed as an optimisation problem over Wassersatin space,
[Hu et al., 2019b].

Neural ODEs via Relaxed Optimal Control. A perspective on deep
recurrent neural networks, [Jabir et al., 2019].

Gradient flows for (regularised) stochastic control problem,
[Si¥ka and Szpruch, 2020].

Robust pricing and hedging with neural SDEs, [Gierjatowicz et al., 2020].

Unbiased approximation of parametric path dependent PDEs,
[Vidales et al., 2018].
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Key messages of this mini course

» Training neural nets is a sampling problem

» Gradient flow view on training neural networks provides mathematical
framework to study machine learning

» Probabilistic numerical analysis provides quantitative bounds that do not
suffer from the curse of dimensionality

» Machine learning perspective leads to new algorithms and mathematical
tools for (stochastic) control problems and offers a fresh perspective on
classical quantitative finance problems.
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Success

of Deep Learning

Neural networks appeared in the 1943 seminal work by Warren McCulloch
and Walter Pitts inspired by certain functionalities of the brain aiming for
artificial intelligence (Al)
Excellent performance (image and language recognition, classification
tasks, etc) due to

> architectural innovations (e.g. many layers, dropout, LSTMs)

» algorithmic innovations (e.g ADAM methods)

> vastly larger data sets

» Benchmark data sets (MNIST, ImageNet, CIFAR)

» GPUs, TPUs and cloud computing

> very efficient open source libraries (Tensorflow, Theano, Torch).
“Imagenet classification with deep convolutional neural networks” by
Krizhevsky, Sutskever, Hinton, (2012) NIPS - 68613 citation as of

31-08-2020.

“Grandmaster level in StarCraft Il using multi-agent reinforcement
learning” by Vinyals, Babuschkin,...,David Silver, (2019) Nature.
Estimated cost of training the algorithm - $30m.

So far deep learning is successful in a 'relatively’ stationary regime.
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Neural networks

i) an activation function ¢ : R — R; p(2) = (¢(z1),-..,¢(z1)) "
ii) The space of parameters

L

N=@R">" xR") x R xR ) x---x (R xR"),

iii) Defines a function RV : R" - R" given recursively, for xo € RIO, by
Zy € R’O, 0}

zk:@/k(akzk71+ﬁk),k:1,.4.7L—1.
(RV)(2°) = otz + Bt
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Arnold-Kolmogorov theorem and Universal approximation

If an activation function ¢ is bounded, continuous and non-constant, then for
any compact set K C RY the set

{(R\Il) ‘RY 5 R : (RV) given above
with L = 2 for some neN,OcJ?,Bj1 ER,a} E]R‘ﬂj:l,...m}

is dense in the space of continuous functions from K to R. See e.g.
Hornik [Hornik, 1991],[Cybenko, 1989].

» Practical quantitative results are possible when working with additional
structural assumptions (e.g low-dimensional hypothesis)

> Some recent work [Schmidt-Hieber et al., 2020], [Ma et al., 2019]



New era of overparameterized statistical models 7

under-parameterized /\ over-parameterized

Test risk
sical” . “modern”
interpolating regime

~ Training risk:
<

. _interpolation threshold
-~

Complexity of H
From Belkin. et.al. [Belkin et al., 2018].

» Need for new theory to study generalisation error. Classical Vapnik
dimension and Rademacher complexity doesn’t help.

» Overparametrised models can be optimal in the high signal-to-noise ratio
regime Montanari et.al [Mei and Montanari, 2019]

» Implicit Regularisation [Heiss et al., 2019], [Neyshabur et al., 2017]



Key Questions

i) Function approximation theory: the challenge is to derive non-asymptotic
results; expressiveness in terms of width and depth; network architecture
design: feed-forward, convolutional, LSTM, ResNet, Attention Networks...

ii) Generalisation error in particular in overparametrised regime.

iii) Non-convex optimisation and effect of noise in stochastic gradient
algorithms, in general non-convex optimisation problems are NP-hard;
links with the optimisation; lazy and mean-field regimes in
overparametrised setting
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(Noisy) Gradient Descent
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Optimisation on RY

> Consider F:R? - R
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> Consider F:RY 5 R

» Assume F is strongly convex with parameter m > 0 i.e Vx, y and
a € (0,1) we have
>
(x = v, VxF(x) = VxF(y)) 2 m|x — y?

> equivalently

F(¥) 2 F() + (VxF(x),y = x) + 2 ly = x?

> equivalently

Fla+ (1—a)y) <aF(x)+(1—a)F(y) — %ma(l —a)|x —y?
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» Classical gradient descent algorithm with fixed learning rata v > 0

Xn+1 = Xn — 'Y(VXF)(Xn)

» Continuous view point aka gradient flow

dxt = —(VxF)(x:)dt

» F is decreasing along gradient flow (x;)

dF (xt) = (VxF)(xt)dx: = —|(VxF)(x:)|*dt .

» Since F is strongly convex 3lx* s.t F(x*) = min<F(x).
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Rate of convergence

» We can easily compute the rate of convergence

d(xe = x7) = =((VxF)(xt) = (V< F)(x"))dt

» Hence

dxe — x*|? = =2(xt — x*, (VxF)(xt) — (VxF)(x*))dt < —2m|x; — x*

»> We have
|Xt _ X*‘2 S |X0 _ X*|2e—2mt

» Exercise: Do a computation directly for discrete time dynamics. Need F
Lipschitz and the Lipschitz constant matters.

» |f we drop the assumption that F is convex, gradient descent can only
converge to a local minimum.
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» Consider noisy gradient descent with o > 0

dX, = —(V<F)(X:)dt + cdW,

» A natural question: p: := L£(X;) — ? when t — oo.
> PDE for the law. Let ¢ € C*(RY)

GBI~ {—(VF)O@) - Vo(X:) + ";vzas(xf)} ‘
> Suppose that 1: admits density u(t, x)
%/Rd P(x)u(t, x)dx = /Rd (—(VF)(X)V¢(X) + %2v2¢(x)> p(t, x)dx
- /R d (div((VF)(x)u(t, X)) + ";vm(n X)> H(x)dx
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Noisy gradient descent R

» Consider noisy gradient descent with o > 0

dX, = —(V<F)(X:)dt + cdW,

» A natural question: p: := L£(X;) — ? when t — oo.
> PDE for the law. Let ¢ € C*(RY)

2 Blo00)] = E [~(VFI(X) - Vo(x) + T 36(x)]
> Suppose that u; admits density u(t, x)
& [ stamtexan= [ (<FT600 + S 900 ) e )
= [, (TPt 0) + G (e, 0) o)
> Since this holds for all ¢, u = u(t, x) solves

2
O = div((VF)u) + 5 Au
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Gibbs measure

» Under mild conditions on VF, X is ergodic with invariant measure

m(dx) = %e_?sz(X)dx 4 :/ e T gy
R4

» In other words for all Xo, u: = L£(X:) converges weakly to 7

» Indeed plugging in 7 into right-hand side of the PDE:
% F(x)
1 / ( VF)Ve(x) + = v ¢>(X)) ZF0) gy
- —/ ( VE(x)Vo(x) + ws( ) 2VF(X)) 2R g

— ZE[B(X)] =0

» Hence 7 is a stationary solution to the PDE. Extra work needed to prove
that pu: = m.
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Laplace method

>

m(dx) = %e_ ELOPN
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Laplace method

>

» Consider § > 0

2

1 — 2 F(x
RE(X) > minF +8) = 5 [ Lo resye Vo

— 2 F(x
< fl{F(X)>min F+5}e o2 F( )dX

. _ 2
f 1{F(X)§min F+5}€ D) F(X)dX
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Laplace method

>

» Consider § > 0

. 1 _
7T(F(X) > min F + 6) = _/1{F(x)>min F+5}€ o2

2

V4 HOP
_ 2 X
< f 1{F(X)>min F+5}e o2 F( )dX
. —2
f 1{F(X)§min F+5}€ D) F(X)dX

; . 1
> F(x)<minF+0 = —r5 < —mrrry

L X)>min r
W(F(X)>minF+5)Sf (F()>min F1+6} €

_22 (F(x)—(min F+3)) dx

—0asoc—0

f 1{F(x)§min F+5}dx
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Laplace method

>

» Consider 6 > 0

2

1 x
W(F(X) > min F—‘r6) /1{F(x >min F+6} € - F( )dX

fl{F x)>min F+5} € 2 FOI g

fl{F Yy<min F+86} € U2 (X)dX

a 1 1
> F(X)SmlnF+5:> mgm

S LiF(>min Frsr€ o2 (FOO—(min F+0)) gy

7(F(x) > min F +§) <
(FC9 ) J L{F()<min F4sy dX

—0asoc—0

» As o — 0 the 7 concentrates near minimiser of F
» No Convexity required!. See [Hwang, 1980].
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Differential Calculus on P(R?)
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Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that V : P(R?) — R is C' if there exists a continuous map
8V . P(R?) x R? — R such that for any m,m’" € P(R?)

V((1—s)m+sm') — V(m) 2%

lim ————2— > " — [ (m,y)(m — m)(dy).

SN0 s Rd om

» Note 5—,‘1/7 is defined up to normalising constant. We take

/R OV (i, y)m(dy) = 0

da 0m
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Measure derivatives

Definition 1 (functional/flat derivative or first variation)

We say that V : P(R?) — R is C' if there exists a continuous map
8V . P(R?) x R? — R such that for any m,m’" € P(R?)

!ng;ﬁﬂgﬁljﬂﬂzijmymn—mum

» Note 5—,‘1/7 is defined up to normalising constant. We take

[, s (mymian =0
d
> Take ) € (0,1). Define m* := m + X\(m’ — m) and note that

vim) = vim = [ [ 2 )~ m(ay)an

> Note that regularity of 2%(m,y) in y may determine the metric (e.g total
variation or Wassersteln) in which V is Lipschitz.



Intrinsic/Lions/Wasserstein derivative

Definition 2
If &£ is C' in y the intrinsic derivative D,V : P(RY) x R? — R? is defined by

DmV(m,y) := <vy§—¥> (m,y)

uet et al., 2015
Assume that V is C* with % is Ctin y and D,V is continuous in both
variables. Let b: RY — RY be a Borel measurable and bounded. Then

_ / _ DuV(m)(y) - bly)m(dy).

Lemma 1 ([Cardalia

im Y ((ld + sb)#m) — V(m)
s\,0 S R
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Intrinsic/Lions/Wasserstein derivative

Proof.

Let m®* := m + A((/d + sb)#m — m). Then by change of variables formula
and mean value theorem

V((Id + sb)#m) — V(m) = //‘W X (I + s b)#m — m)(dy)dA

/01/ (%(msA y +sb(y)) — %(ms’*,y)) m(dy)dA

5/01//01 DaV(m™, y + t 5 b(y))b(y)dt m(dy)dA

» Example: V(m fRd f(x) m(dx) = (f, m).

%(m, Y)=f(y) and DpV(m,y) = V,f(y).
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Chain Rule - proof due to Paul-Eric Chaudru de Raynal

t t
Xt:Xo+/ bsds-i—/ gsdW., Xo € L2
(0] 0

> Need for the chain rule on P>(R?) to compute £ V/(L(X:))
Recall p™¢ = pe + A(ppere — pie), ¢ — e when e — 0.

%V(,u:) = I|m € (V(,ut+e) V()
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Variational perspective on noisy gradient descent
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Ve (m) = /F(X)m(dx)—|— %H(m),

where relative entropy H for m € P(R?)

H(m) = Jza m(x)log m(x)dx if mis a.c. w.rt. Lebesgue measure
R otherwise

> Let b: R x R? — R? be a vector field and consider gradient flow (we take
b so that PDE is well defined)

8[- Vi = diV(btl/t)

» Find b so that V7(v:) \ as t — oo



Variational perspective

» For e, A >0 let 1/:"6 = V¢ + A(Vetre — vt) we have

A I|m € 1(V (Vere) — V7 (r))

= lim e </ / (v (Vt+e—1/t)(dy)d)\)
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Variational perspective

» For e, A >0 let 1/:"E = V¢ + A(Vetre — vt) we have

0V (1) = I|m € 1(V (Vere) — V7 (r))

= lim e (/ / (v (Vt+e—1/t)(dy)d)\)

> Note that ;" — v; as € — 0 hence

OV (1) :/%—Va(m,y)atut(dy) = / %(Vt,y)div(btuf)(dy)

— 7/ (vy%> (v, y)beve(dy)

> To have V7(v:) \ take

b(y) = (%, % ) )



Variational perspective
» Recall that V7 (m) = (F, m) + %Z(Iog m, m)

2L (m,y) = Fy) + % (log m(y) +1)

bi(y) = (9,5 ) (my) = (FyF)0) + 59, log(m())
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V() = () + % ogm(y) + 1)

bi(y) = (9,5 ) (my) = (FyF)0) + 59, log(m())

» Plug this back into the gradient flow equation
o2
8tl/t = div (((VF) o= ?V |Og(l/t)) l/t)
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Oy = div ((VF)ve) + ?Ayt

» What is a minimiser of V?? Note V7 is strictly convex hence the first
order condition
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Variational perspective
» Recall that V7 (m) = (F, m) + %Z(Iog m, m)

V() = () + % ogm(y) + 1)

b() = (V5 ) () = (9,)0) + 59, log(m(y)

» Plug this back into the gradient flow equation
o2
8tl/t = div (((VF) o= ?V |Og(l/t)) l/t)
o2
Oy = div ((VF)ve) + ?Ayt

» What is a minimiser of V?? Note V7 is strictly convex hence the first
order condition

%4
om

(m,y) = F(y) + %2(|0g m(y) + 1) = const

2
m(y) = e 2" . const



One hidden layer neural network
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Non-covex minimization problem

» Consider network

LS Bhaplans-2) = [ Botar 2) mi(as,da).
i=1 Rd
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Non-covex minimization problem

» Consider network

LS Bhaplans-2) = [ Botar 2) mi(as,da).
i=1 Rd

> Denote ¢(x,z) = Bp(a - z) for x = (a, B) € RP*", we should minimize,

1 z i 0'2 Pl

X ¢(y—— gﬁx',z)udy,dz +—= |x|7,
RxRP n; ( ) ( ) 2 —~
=:U(x)

=:F(x)

which is non-convex.



Non-covex minimization problem

» Consider network

% IZ"; Br.ip(an,i-z) = /]Rd Bp(a - z) m"(dB,da) .

> Denote ¢(x,z) = Bp(a - z) for x = (a, B) € RP*", we should minimize,

1 z i 0'2 Pl

o [ o(y=1 3 02) e+ I
RxRD n; 2 ~—~
=:U(x)

=:F(x)

which is non-convex.

» Gradient descent with learning rate 7 > 0:
Xiq1 = X — TV i |:F(Xk)+7U(Xk)2:| , i=1...,n.

Here x' = (o/, ') € R x RP.



Non-covex minimization problem

» Consider network

LS Bhaplans-2) = [ Botar 2) mi(as,da).
i=1 Rd

> Denote ¢(x,z) = Bp(a - z) for x = (a, B) € RP*", we should minimize,

1 z i 0'2 Pl
X ¢(y—— gﬁ(x',z))u dy,dz)+— |x|°,
RxRD n ; ( ) 2 ~—~
=:U(x)

=:F(x)

which is non-convex.

» Gradient descent with learning rate 7 > 0:
Xiq1 = X — TV i |:F(Xk)+7U(Xk)2:| , i=1...,n.

Here x' = (o/, ') € R x RP.

» No hope for deterministic gradient to find global minimum....



Approximation with gradient descent

» In practice noisy (regularised), gradient descent algorithms are used:

i i g 1~ aroi
Xkt1 = Xk +7'/ ¢<y - Z@(x{<7z))vxf<,p(xk7z) v(dy, dz)
RxRD n3
=2 . i
- %VXiU(XL)—&—UﬁﬁL,

where ¢ are i.i.d. samples from N(0, I).



Approximation with gradient descent

» In practice noisy (regularised), gradient descent algorithms are used:

i i g 1~ Al
Xkt1 = Xk +7'/ d)(y - Z@(XL7Z))VX,'<,0(X,<,Z) v(dy, dz)
RxRD n3

-2 ; )
- % vxi U(X;() + U\/;é-L P

where ¢ are i.i.d. samples from N(0, I).

» Taking weak limit gives

; - Lm oy Ay
axi=[ [ o(y-13ex2)) Vet ey, do)
RxRD n=

| 9

V. U(X! )} dt + cdW, ,



Mean-field limit and convexity

> Write

%Z@(XI»Z)I/ &(x,z) m"(dx) as n— oco.

Rd
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Mean-field limit and convexity

> Write
1 . N ~ n
. ;:1 o(x', z) —/ &(x,z) m"(dx) as n — oo.

Rd

> The search for the optimal measure m* € P(R?) amounts to minimizing

PR 5 m— RXRD¢<y—/Rd ?(x, 2) m(dx)>u(dy,dz) =: F(m),
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Mean-field limit and convexity

> Write
1 . N _ ~ n
. ;:1 o(x', z) —/ &(x,z) m"(dx) as n — oo.

Rd

> The search for the optimal measure m* € P(R?) amounts to minimizing

PR 5 m— RXRDm(y—/Rd ?(x, 2) m(dx)>u(dy,dz) =: F(m),

which is convex (as long as ®) i.e

F((1 —a)m+am') < (1 —a)F(m) +aF(m') forall a €[0,1].
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Mean-field limit and convexity

> Write
1 . N _ ~ n
. ;:1 o(x', z) —/ &(x,z) m"(dx) as n — oo.

Rd
> The search for the optimal measure m* € P(R?) amounts to minimizing
P(RY) > m— ¢<y —/ &(x, z) m(dx)> v(dy, dz) =: F(m),
RXRP RY
which is convex (as long as ®) i.e

F((1 —a)m+am') < (1 —a)F(m) +aF(m') forall a €[0,1].

» Observed in the pioneering works of Mei, Misiakiewicz and
Montanari [Mei et al., 2018], Chizat and Bach [Chizat and Bach, 2018] as
well as Rotskoff and Vanden-Eijnden [Rotskoff and Vanden-Eijnden, 2018].
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Derivation of MFLD

ax; =

1=r(;

2 |

2

_(NGX,.FN(th,...,X )+ % VU(X ))dt—l—adW'

ZN: ) / < ZN: (X’Z)> (dz,dy).



Derivation of MFLD

FN(x',... x (
o2

axi = _(Nax,.FN(x},...,x )+ - VU ))dt+adW’

2 |

» We expect to have, as N — oo,

2

my = Law(X;) t € [0, 00).

ZN: ) / < ZN: (XJZ)> (dz,dy).



Derivation of MFLD

FN(x',... x (
o2

axi = _(Nax,.FN(x},...,x )+ - VU ))dt+adW’

2 |

» We expect to have, as N — oo,
2
dX; = — <DmF(mt,Xt) + %VU(xt)) dt + cdW; t € [0, 00)
my = Law(X;) t € [0, 00).
» Fokker—Planck

2 2
dem ="V - ((DmF("L )+ %VU)m—&- %Vm> on (0,00) x RY.

ZN: ) / < ZN: (XJZ)> (dz,dy).



Energy functional - Variational Perspective
»> We want to minimise
2
V°(m) := F(m) + Z-H(m),

where relative entropy H for m € P(R?)

H(m) = Jza m(x) log (:((:))) dx if misa.c. w.r.t. Lebesgue measure
0 otherwise

and Gibbs measure g:
g(x) = e Y™ with U stt. /d e Ydx=1.
R
» Mean field Langevin Dynamics
dX: = — <Dm(mf,Xt) + ?VU(Xt)) dt +odW; t € [0,00).

» U gives contraction, W smooths the law
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Assumptions |

Assumption 3

F € C! is convex and bounded from below.

Assumption 4

The function U : R? — R belongs to C*. Further,
there exist constants Cy > 0 and C[, € R such that

VU(x)-x > Cy|lx|> + C,, forall xecR".

VU is Lipschitz continuous.




Convergence when o \, 0

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the
sequence of functions V° = F + %-H converges in the sense of I'-convergence
to F as o \( 0. In particular, given a minimizer m*° of V°, we have

limsup F(m™?) = inf F(m).
o—0 meP,(RY)
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Convergence when o \, 0

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the

sequence of functions V° = F + %-H converges in the sense of I'-convergence
to F as o \( 0. In particular, given a minimizer m*° of V°, we have

limsup F(m™?) = inf F(m).
o—0 meP,(RY)

Proof outline: Let f, : X — R. Recall that 7, -converge to f, if

> for every sequence x, — x f(x) < liminf,— oo fn(xn):

» for every x € X, there is a sequence x, converging to x such that
f(x) > limsup,_, ., fn(xn):
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Convergence when o \, 0

Proposition 5

Assume that F is continuous in the topology of weak convergence. Then the

sequence of functions V° = F + %-H converges in the sense of I'-convergence
to F as o \( 0. In particular, given a minimizer m*° of V°, we have

limsup F(m™?) = inf F(m).
o—0 meP,(RY)

Proof outline: Let f, : X — R. Recall that 7, -converge to f, if

> for every sequence x, — x f(x) < liminf,— oo fn(xn):

» for every x € X, there is a sequence x, converging to x such that
f(x) > limsup,_, ., fn(xn):
» To get liminf,,—0 V7"(m,) > F(m) use l.s.c. of entropy.

> To get limsup, _,, V°"(m,) < F(m) smooth with heat kernel
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Characterization of the minimizer

Proposition 6

Under Assumption 3 and 4, the function V° has a unique minimizer
m* € P2(R?) which is absolutely continuous with respect to Lebesgue measure.
Moreover, m* = arg min,,,c pray V7 iff

2

S 2
oF (m*,)+ % log(m™) + %U is a constant, Leb — a.s,

m

or equivalently

34

50



Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m s.t. V(m) < oo,

2
S = {m : U—H(m) < V°(m)— inf F(m/)} .
2 m’ €P(RY)

Since V7 is Ls.c. it attains its minimum on S, say m* so V?(m*) < V?(m) for
allmeS.
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Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m s.t. V(m) < oo,

2
S = {m : U—H(m) < V°(m)— inf F(m/)} .
2 m’ €P(RY)

Since V7 is Ls.c. it attains its minimum on S, say m* so V?(m*) < V?(m) for
allmeS.

If m¢ S then

2
Vo(m*) < V(@) < ZH(m)+ inf F(m') < V7(m)
2 m’EP(]Rd)

so m* is global minimum of V. Since V is strictly convex it is unique.
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Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of the
entropy are compact so consider, for some fixed m s.t. V(m) < oo,

2
S = {m : U—H(m) < V°(m)— inf F(m/)} .
2 m’ €P(RY)

Since V7 is Ls.c. it attains its minimum on S, say m* so V?(m*) < V?(m) for
allmeS.

If m¢ S then

2
Vo(m*) < V(@) < ZH(m)+ inf F(m') < V7(m)
2 m’EP(]Rd)

so m* is global minimum of V. Since V is strictly convex it is unique.

Step 2 (sufficient condition): Assume m™ satisfies first order condition then for
any € >0 and m € P(R?) we have

V(1 —e)m" +em)— Vo (m")

Vo (m) — Vo (m*) >

oF , . o’ . 0’ .
> — o — - — =0.
_/Rd (5 (m*,-) + 3 log m™ + 2U)(m m*)(dx) =0
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Connection to gradient flow

» Recall

2 2
om=V . ((DmF(m,-) + %VU)m+ %Vm) on (0,00) x R?,
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Connection to gradient flow

» Recall

2 2
om=V . ((DmF(m,v) + %VU)m+ %Vm) on (0,00) x R?,

» |f m* is such that

oF , . o’ o 0 o
m(m )+ > log(m™) + 7U is a constant, m* — a.s.
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Connection to gradient flow

» Recall

2 2
Oom=1V . ((DmF(m,v) + %VU)m+ %Vm) on (0,00) x R?,

» |f m* is such that

oF , . o’ o 0 o
m(m )+ > log(m™) + 7U is a constant, m* — a.s.

» Then m* is a stationary solution of gradient flow PDE

2 2
V- ((DmF(m*, )+ %VU)m* + %wﬁ) =0

36
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Mean-field Langevin equation

We see that if
2
dX; = — <DmF(mt,Xt) + %VU(XJ) dt + odW; t € [0,0)
m; = Law(X;) t € [0, 00)

has a solution then (m;):>o solves the Fokker—Planck equation

2 2
om=V - ((D,,,F(m7 )+ %VU)m—F %Vm) on (0,00) x RY.
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Mean-field Langevin equation

We see that if
2
dX; = — (DmF(mt,Xt) + %VU(XJ) dt + odW; t € [0,0)
m; = Law(X;) t € [0, 00)

has a solution then (m;):>o solves the Fokker—Planck equation

2

2 2
om=V - ((D,,,F(m7 )+ %VU)m—F J—Vm) on (0,00) x RY.

Key challenges in studying invariant measure(s)

» Drift not of convolutional form [Carrillo et al., 2003]
Otto [Otto, 2001], [Tugaut et al., 2013]

» To establish — convergence need result to hold for all o, so works
of [Bogachev et al., 2019] and [Eberle et al., 2019] do not apply.
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Assumptions Il

Assumption 7

Assume that the intrinsic derivative D F : P(R?) x RY — R? of the function
F : P(RY) — R exists and satisfies the following conditions:

D, F is bounded and Lipschitz continuous, i.e. there exists Ck > 0 such
that for all x,x € R and m, m’ € P»(RY)

|DmF(m, x) — DmF(m',x")] < Cr(]x — x| + Wa(m, m")).

DmF(m,-) € C>(RY) for all m € P(R?).
VDnmF : P(RY) x RY — R x R? js jointly continuous.

38
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Energy Dissipation

Theorem 2
Let mg € P2(RY). Under Assumption 4 and 7, we have for any t > s > 0

VU(mt) — Va(ms)

//Pd DmF(mr, x s vm’( )+ 2 VU(X) m,(x) dx dr.
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Energy Dissipation

Theorem 2

Let mg € P2(RY). Under Assumption 4 and 7, we have for any t > s > 0

V7 (me) = V7 (ms)

//Pd DmF(mr, x s vm’( )+ 2 VU(X) m,(x) dx dr.

Proof outline: Follows from a priori estimates and regularity results on the
nonlinear Fokker—Planck equation and the chain rule for flows of measures.
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Convergence

Theorem 3

Let Assumption 3, 4 and 7 hold true and mg € Up2P,(R?). Denote by
(me)e>o the flow of marginal laws of the solution to MFLD. Then, there exists
an invariant measure of of MFLD equal to m* := argmin,, V’(m) and

Wa(me,m*) — 0 as t — co.
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Convergence

Theorem 3

Let Assumption 3, 4 and 7 hold true and mg € Up2P,(R?). Denote by
(me)e>o the flow of marginal laws of the solution to MFLD. Then, there exists
an invariant measure of of MFLD equal to m* := argmin,, V’(m) and

Wa(me,m*) — 0 as t — co.

If V was continuous then result would follow from tightness of (m;):>o and
Theorem 2. The entropy is only |.s.c.

Proof key ingredients: Tightness of (m;):>0, Lasalle’s invariance principle,
Theorem 2, HWI inequality.
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Convergence, step 1: invariance

Let S(t)[mo] := m¢, marginals of solution to MFLD started from .
Define w-limit set
w(mo) := {,LL € Po(R?) : 3(tn)nen s.t. Wa(me,, 1) — 0 as n — oo} .

Then

i) w(mo) is nonempty and compact (since for any t > 0, (ms)s>: is relatively
compact, w(mo) = o (m:)o=),
ii) if u € w(mg) then S(t)[u] € w(mo) for all t > 0,
i) if 4 € w(mo) then for any t > 0 there exists ¢’ s.t. S(t)[i'] = p.
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Convergence, step 1: invariance

Prove that m* € w(mo)
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Convergence, step 1: invariance

Prove that m* € w(mo)

Since w(mop) is compact, there is M € argmin V(m).

méew(mq)

42 /50



Convergence, step 1: invariance

Prove that m* € w(mo)
Since w(mo) is compact, there is M € argmin () V(m).

from iii) Vt > 0 there is p s.t. S(t)[x] = M and by Theorem 2 for any s > 0 we

get
V(S(t +5)[ul) < V(S(8)[u]) = V().
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Prove that m* € w(mo)
Since w(mo) is compact, there is M € argmin () V(m).

from iii) Vt > 0 there is p s.t. S(t)[x] = M and by Theorem 2 for any s > 0 we

get
V(S(t +5)[ul) < V(S(8)[u]) = V().

from ii) (invariance) S(t + s)[u] € w(mo) so V(S(t + s)[u]) > V(m)
(definition of m ).



Convergence, step 1: invariance

Prove that m* € w(mo)

Since w(mop) is compact, there is M € argmin ) V(m).

mew(mg

from iii) Vt > 0 there is p s.t. S(t)[x] = M and by Theorem 2 for any s > 0 we
get
V(S(t +s)[u]) < V(S(8)[u]) = V(m).

from ii) (invariance) S(t + s)[u] € w(mo) so V(S(t + s)[u]) > V(m)
(definition of m ).

By Theorem 2

- D __ [

2

(x) + %VU(X) () dx .

o
DmF(m, ==
(rm, x) + >

Vm

dt

Due to the first order condition (Proposition 6) get M = m*.



Convergence, step 2: HWI inequality

m* € w(mg) = 3I(me,) — m
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Convergence, step 2: HWI inequality

*

m* € w(mg) = 3I(my,) > m

We want to show that if m;, — m™ then V7 (my,) — V(m™).
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Convergence, step 2: HWI inequality

*

m* € w(mg) = 3I(my,) > m
We want to show that if m;, — m™ then V7 (my,) — V(m™).

But V=F+ %QH and H only l.s.c. So we need to show that

/ m” log(m") dx > lim sup/ my, log(my,) dx .
Rd RI

n—oo
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Convergence, step 2: HWI inequality [Otto and Villani, 2000]

Assume that v(dx) = e~ ¥ (dx) is a P»(RY) measure s.t. W € C3(RY), there
is K € R s.t. W > Kly. Then for any p € P(RY) absolutely continuous
w.r.t. v we have

K
Hipr) < Watior) (VIGT) = G Walin))
where [ is the Fisher information:

ww:@hm%mﬂwy
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Convergence, step 2: HWI inequality

We thus have
/d my, ( log(m,) — Iog(m*)) dx < Wh(m,, m*)(\/E + CWs(my,, m*))7
R

with
Ih:=E Uv log (mtn(th)) —Viog (m*(th)) H :
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Convergence, step 2: HWI inequality

We thus have
/ my, ( log(m,) — Iog(m*)) dx < Wh(m,, m*)(\/E + CWs(my,, m*)),
Rd

with
Ih:=E Uv log (mtn(th)) —Viog (m*(th)) H :

Need to show sup, I, < co (estimate on Malliavin derivative of the change of
measure exponential).
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Convergence, step 3

Have m;, — m* for some t, — oo. Moreover t — V/(m;) is non-increasing in t
so there is ¢ := limp— o0 V/(ta).

Use uniqueness of m* and step 2 to show that any other sequence V(m: )
converges to the same ¢, w(my) = {m"}, so Wh(m¢, m*) — 0.
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Exponential convergence

Theorem 4
If o is sufficiently large, there exists A\ > 0 s.t

Wa(mye, m*) < e *Wh(mo, m*).

Proof see: [Eberle et al., 2019],[Hu et al., 2019a]

» New perspective on Lazy training paradigm.
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