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Energy functional - Variational Perspective

» We want to minimise
o2
Ve(m) := F(m) + 7H(m),
where relative entropy H for m € P(RY)

H(m) = {fRd x) log (m((x))) dx if misa.c. w.r.t. Lebesgue measure

00 otherwise

and Gibbs measure g:
g(x) = e Y™ with U s.t. /]Rd e VW gx =1.
» Mean field Langevin Dynamics
dX; = — (Dm(tht) + %VU(XQ) dt +odW; t € [0,00).

» U gives contraction, W smooths the law
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Assumptions |

Assumption 1

F € C! is convex and bounded from below.

Assumption 2

The function U : R — R belongs to C*°. Further,
there exist constants Cy > 0 and C[, € R such that

VU(x) x> Cy|x]?>+ C|, forall xecRY.

VU is Lipschitz continuous.




Convergence when o 0
Proposition 3

Assume that F is continuous in the topology of weak convergence. Then
o 2 o

the sequence of functions V° = F + %-H converges in the sense of

I-convergence to F as o \, 0. In particular, given a minimizer m*° of

V%, we have

limsup F(m*?) = inf F(m).
e (m*7) . (m)
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Proof outline: Let f, : X — R. Recall that f, -converge to f, if

> for every sequence x, — x f(x) < liminf,_ o0 fn(Xxn):
» for every x € X, there is a sequence x, converging to x such that
f(x) > limsup,_, o fo(xn):




Convergence when o 0

Proposition 3

Assume that F is continuous in the topology of weak convergence. Then
the sequence of functions V° = F + ”;H converges in the sense of
I-convergence to F as o \, 0. In particular, given a minimizer m*° of
V?, we have

limsup F(m*?) = inf F(m).
e (m*7) . (m)

Proof outline: Let f, : X — R. Recall that f, -converge to f, if

> for every sequence x, — x f(x) < liminf,_ o0 fn(Xxn):

» for every x € X, there is a sequence x, converging to x such that
f(x) > limsup,_, - fa(xs):

» To get liminf,, o V7"(m,) > F(m) use l.s.c. of entropy.
> To get limsup,, o V7"(m,) < F(m) smooth with heat kernel




Characterization of the minimizer

Proposition 4

Under Assumption 1 and 2, the function V'° has a unique minimizer
m* € Po(RY) which is absolutely continuous with respect to Lebesgue
measure. Moreover, m* = arg min,cpwa) V7 iff

2

oF 2
%(m*, )+ % log(m*) + % U is a constant, Leb — a.s,

or equivalently




Proof outline: Step 1 (existence of unique minimiser): Sublevel sets of
the entropy are compact so consider, for some fixed m s.t. V7(m) < oo,

2
Oy o g O ( H /
S = {m. 7H(m) < V7(m) —mlelglsz) F(m )} .

Since V7 is |.s.c. it attains its minimum on S, say m* so
Ve(m*) < Vo(m) for all me S.
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the entropy are compact so consider, for some fixed m s.t. V7(m) < oo,

2
Oy o g O ( H /
S = {m. 7H(m) < V7(m) —mlelglsz) F(m )} .

Since V7 is |.s.c. it attains its minimum on S, say m* so
Ve(m*) < Vo(m) for all me S.

If m ¢ S then

2
o * o[ = g H / o
Ve (m*) < Vo(m) < 7H(m)+m/€|glzkd)F(m)§ V7 (m)

so m* is global minimum of V2. Since V7 is strictly convex it is unique.

Step 2 (sufficient condition): Assume m* satisfies first order condition
then for any ¢ > 0 and m € P(R?) we have

> V(1 —e)m* +em)— V7(m*)

Va(m) — V7 (m")

Z/Rd <5F(m*,-)+g—2logm*+%2U> (m—m*)(dx) =0.

sm 2

6
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Connection to gradient flow

» Recall

2 2
dem =V - ((DmF(m, )+ %VU)m +5-Vm

) on (0,00) x RY,
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o2 o2
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Connection to gradient flow

» Recall
p) 2

oem=V - ((DmF(m,~) 4 %VU)m—i— %Vm) on (0,00) x RY,

» If m* is such that

OoF 2 2
(m*,) + % log(m™) + 7 Uisa constant, m* — a.s.

om
» Then m* is a stationary solution of gradient flow PDE

2 2
V- ((DmF(m*, )+ %VU) m* + %vw) =0



Mean-field Langevin equation

We see that if

2
dX; = — (DmF(mt,Xt) + %VU(XQ) dt +odW; t € [0,00)
m; = Law(X;) t € [0, 00)

has a solution then (m;);>o solves the Fokker—Planck equation

0'2 0'2
dem ="V ((DmF(m, )+ 7vu)m + ?Vm> on (0,00) x R? .



Mean-field Langevin equation
We see that if
2
m; = Law(X;) t € [0, 0)

has a solution then (m;);>o solves the Fokker—Planck equation

U2 0'2
dem ="V ((DmF(m, )+ 7vu)m + ?Vm> on (0,00) x R? .

Key challenges in studying invariant measure(s)

» Drift not of convolutional form [Carrillo et al., 2003]
Otto [Otto, 2001], [Tugaut et al., 2013]

» To establish — convergence need result to hold for all o, so works
of [Bogachev et al., 2019] and [Eberle et al., 2019] do not apply.



Assumptions ||

Assumption 5
Assume that the intrinsic derivative D,,F : P(RY) x R? — R? of the
function F : P(R?) — R exists and satisfies the following conditions:

D,,F is bounded and Lipschitz continuous, i.e. there exists Ck > 0
such that for all x,x € R? and m, m" € P,(RY)

|DmF(m, x) = DnF(m',x")] < Cp(|x — X'| + Wa(m, m')).

DmF(m,-) € C>(RY) for all m € P(RY).
VD, F : P(RY) x RY — R? x RY is jointly continuous.




Energy Dissipation

Theorem 1
Let mg € Po(R?). Under Assumption 2 and 5, we have for any t > s > 0

Vve(mg) = V7(ms)

t 2 2
- _/ / B 20) A o) 4 P e ) e
Js Rd 2 m 2

r




Energy Dissipation

Theorem 1
Let mg € Po(R?). Under Assumption 2 and 5, we have for any t > s > 0

Vve(mg) = V7(ms)

t 2 2
- _/ / B 20) A o) 4 P e ) e
Js Rd 2 m 2

r

Proof outline: Follows from a priori estimates and regularity results on
the nonlinear Fokker—Planck equation and the chain rule for flows of
measures.



Convergence

Theorem 2

Let Assumption 1, 2 and 5 hold true and my € Up=oP,(R?). Denote by
(m¢)e>0 the flow of marginal laws of the solution to MFLD. Then, there
exists an invariant measure of of MFLD equal to m* := argmin,, V7 (m)

and
Wh(me, m*) — 0 as t — co.




Convergence

Theorem 2

Let Assumption 1, 2 and 5 hold true and my € Up=oP,(R?). Denote by
(m¢)e>0 the flow of marginal laws of the solution to MFLD. Then, there
exists an invariant measure of of MFLD equal to m* := argmin,, V7 (m)
and

Wh(me, m*) — 0 as t — co.

If V was continuous then result would follow from tightness of (m;):>o
and Theorem 1. The entropy is only |.s.c.

Proof key ingredients: Tightness of (m;):>o, Lasalle’s invariance
principle, Theorem 1, HWI inequality.




Convergence, step 1: invariance

Let S(t)[mo] := m;, marginals of solution to MFLD started from my.
Define w-limit set
w(mo) := {p € Po(R?) : 3(tn)nen s.t. Wa(my,, 1) — 0 as n— oo} .

Then

i) w(mo) is nonempty and compact (since for any t > 0, (ms)s>t is
relatively compact, w(mg) = (\,5¢ (Ms)s>t),
i) if uw € w(mg) then S(t)[u] € w(n_70) for all t > 0,
i) if u € w(mo) then for any t > 0 there exists ' s.t. S(t)[1'] = .



Convergence, step 1: invariance

Prove that m* € w(my)
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Convergence, step 1: invariance
Prove that m* € w(mg)
Since w(mo) is compact, there is M € argmin,,,. (.., V(m).

from iii) Vt > 0 there is p s.t. S(t)[p] = M and by Theorem 1 for any
s > 0 we get

V(S(t + s)[ul) < V(S(5)[u]) = V(m).
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Convergence, step 1: invariance
Prove that m* € w(mg)
Since w(mo) is compact, there is M € argmin,,,. (.., V(m).

from iii) Vt > 0 there is p s.t. S(t)[p] = M and by Theorem 1 for any
s > 0 we get

V(S(t + s)[ul) < V(S(5)[u]) = V(m).

from ii) (invariance) S(t + s)[u] € w(mg) so V(S(t + s)[u]) > V(m)
(definition of m ).

By Theorem 1

- MWL) __

Due to the first order condition (Proposition 4) get m = m*.
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Convergence, step 2: HWI inequality

m* € w(mg) = 3I(m¢,) - m*
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Convergence, step 2: HWI inequality

m* € w(my) = I(my,) — m*

We want to show that if m;, — m* then V7 (m,, ) — V7 (m™).
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Convergence, step 2: HWI inequality

m* € w(my) = I(my,) — m*

We want to show that if m;, — m* then V7 (m,, ) — V7 (m™).

But V=F+ ‘T;H and H only l.s.c. So we need to show that

n— o0

/ m* log(m™) dx > |imSUP/ me, log(me, ) dx .
Rd R4

14 /42



Convergence, step 2: HWI inequality
[Otto and Villani, 2000]

Assume that v(dx) = e~ Y()(dx) is a Po(R9) measure s.t. W € C?(RY),
there is K € R s.t. 0 W > Kly. Then for any p € P(RY) absolutely
continuous w.r.t. v we have

H(uw) < Walp,) (VTG - 5 W)

where [ is the Fisher information:

p(dx) .

1) = [ [7108 S

15 /42



Convergence, step 2: HWI inequality

We thus have

/Rd my, ( log(my,) — Iog(m*)) dx < Wh(my,, m*)(\/ﬁ—i— CWy(my,, m*))7

1

with
I =& [ tog (mq (%)) - Vog (m"(X.)




Convergence, step 2: HWI inequality

We thus have
/d my, ( log(my,) — Iog(m*)) dx < Wh(my,, m*)(\/ﬁ—i— CWy(my,, m*))7
R

with
) Uv log (mtn(th)> ~ Viog (m*(Xt")> ﬂ :

Need to show sup, I, < co (estimate on Malliavin derivative of the
change of measure exponential).

16 /42



Convergence, step 3

Have m;, — m* for some t, — co. Moreover t — V(m,) is
non-increasing in t so there is ¢ := lim,_ 0 V(t,).

Use uniqueness of m* and step 2 to show that any other sequence

V(m, ) converges to the same ¢, w(moy) = {m*}, so Wa(m¢, m*) — 0.
[ |

17 /42



Exponential convergence

Theorem 3
If o is sufficiently large, there exists A > 0 s.t

Wa(me, m*) < e W, (mg, m*).

Proof see: [Eberle et al., 2019],[Hu et al., 2019]

» New perspective on Lazy training paradigm.



Particle approximation of m*

Theorem 4

We assume that for any random variables 11, 1, such that E[|n;|?] < oo,
i =1,2, it holds that

oF 52F
E| sup |—=wm)||+E| sup |—@wm,n)||l <L
vEP,(RY) 5/77( ) veP,(RY) 6m2( )

If there is an m* € P,(R?) such that F(m*) = inf ,cp,re) F(m) then

2L
N

) — F(m*)| <

Proof idea [Chassagneux et al., 2019]
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Let (X:)M,, (Xi)V, be indepdent i.i.d. with law . Let puy = %Zfil 0x;
and mVN =+ t(uy — p), t €0,1].



Let (X), 1 (X)X, be indepdent i.i.d. with law p. Let uy = & SN ox

and mVN =+ t(uy — p), t €0,1].

By the definition of linear functional derivatives

E[F(un)] — {/ /Rd = () (i — )(dv)dt]
:/O E {5m(miv7X1) g (mV aXI):| dt



Let (X), 1 (X)X, be indepdent i.i.d. with law p. Let uy = & SN ox

and mVN =+ t(uy — p), t €0,1].

By the definition of linear functional derivatives

s~ A0 =5 [ [ [ 8 ) o~ aviae]
:/0 E [5m(m£v7X1) ;S (mV ,Xl)] dt
We introduce the (random) measures
ml = ml ¢ %(6)?1 —0x,) and m?”tl =mM + (AN — m),

and notice that due to independence of (X;); and (

Xi
o] - ]

]E[(SF

)Y, we have that

t,t; €[0,1],



Therefore,

oF s, OF

BlFGu) ~ F = [ B [0 Gt %)~ 2 () i

om

/ {/ /]Rd 625("” o X0 y1) (g — mg )(dh)dtl} dt

02F
el Lo
N |:0 0] Rd(5

2

m?2

(milf\,ltla)?byl)(é;(l — 5X1)(dy1)dt1dt} <

2L
< Z=
N



Therefore,

oF > oF

BlFGu) ~ F = [ B [0 Gt %)~ 2 () i

om

_/01E|:/0 /R g;i( Mt X1, 1) (7 —mt)(dyl)dtl} dt

1 Lol 62F
el L
N |:0 0 R4 6

2

m?2

(m,  Kaoy1) (65, — M)(dyl)dndt} <

2L
< =
N

Let (X*)Y, bei.i.d. such that X ~ m*, i=1,..., N. Note that

1

Hence

F (%Za) — F(m*) < %

(8 =P G50)]



Mean-Field Neural ODEs
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Example

» Recurrent neural networks can be written as

XH =X+ (X' 0") XO=¢eR?

» Infinitly deep network (useful when fitting time-series data)

dXf(0) = ¢(X7(0),0:) dt, t€[0,1], Xo=¢€RY

> Take input-output data (&, ¢) ~ M. Our objective is to minimize
J(Oeom) = [ 6= X5OP Mg, do).
R4 x R4

» Compute
d

de

J(0+5(5—6))

e=0

=2 [ (CX5(0) X5 O+ei-0))| _, M(de. do).

T 3 ~
= / I (TOEOL00 0 (43 XE(0), 0) (Be—02) ot

e=0 0

d -
= X§(0+2(5-0))




Example
> Let PSC(0) := 2(¢ — X59) el (VxO)XF(0).0) dr g4 that
dPE(0) = —(Vx@)(X£(6), 0:)PE(8) dt, PS(0) = 2(¢— X74(6))

is given by

e=0

> Hence d%J(a +e(6 - 9))

- /OT /RZd(va(b)(Xt&(e)»@t) PE’C(Q) M(dE, d()(ét —0;)dt



Example
> Let PSC(0) := 2(¢ — X59) el (VxO)XF(0).0) dr g4 that
dPE(0) = —(Vx@)(X£(6), 0:)PE(8) dt, PS(0) = 2(¢— X74(6))

is given by

e=0

> Hence d%J(H +e(f - 0))

- /OT /IRZd(va¢)(XE(9)»9t) PE’C(Q) M(dE, d()(ét —0;)dt

» This means that for some v > 0 choosing

o=t [ (T0)0XE(0).00PE(0) M(dt. )
ensures

%J(G +e(d - 9))
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See [Hu et al., 2019, Li et al., 2017, Cuchiero et al., 2019]
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Relaxed Stochastic Control and Deep Learning
See [Hu et al., 2019, Li et al., 2017, Cuchiero et al., 2019]

> Take external data D = (£,() ~ M € P,(RY x S)
» v = (Vs)sepo, 7], relaxed controls v € .Z([0, T] x RP)

.
Vs = {u: v(dt, da) = n(da)dt, ve € Pa(R?), / /|a|21/t(da)dt < oo},
(0]

» We consider the following controlled process for t € [0, T]

A = t X"4€, a,¢) v, (da) d
e+ [ [ovssaqvidaar

_ T
F0,6,¢) = / / FXES(v), 3, O)we(da)dt + g(XE5 (), C)
0_2 T
+?/0 Ent(v:)dt,

M) = / J7 (v, €,¢) M(d€, d¢)
RIxS



Relaxed Stochastic Control and Deep Learning

» Mean-field perspective on neural networks

1 n
=D Bniplani -2+ pin-C) = /R Bela-z+p-Q)v"(dp, da,dp).
i=1
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Relaxed Stochastic Control and Deep Learning

» Mean-field perspective on neural networks

1 n
; Zﬂn,i@(an,i - Z+ Pi,n * C) - /]Rd ﬂ@(a cZ+ P C) Vn(dﬁ7 dOé, dp) o
i=1

> Let ¢(z,a,¢) = Bp(a-z+ p-¢), and consider

S5 = t X"$¢, a,¢) v, (da) d
e+ [ [ovssaquidaar

26
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Relaxed Stochastic Control and Deep Learning

» The goal is to find, for each t € [0, T] a vector field flow (bs ¢)s>0
such that the measure flow (vs+)s>0 given by

asVs,t = diV(Vs,t bs,t)y s>0, Vot = V? S P2(Rp)a

satisfies that s — J7(vs,.) is decreasing.
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» The goal is to find, for each t € [0, T] a vector field flow (bs ¢)s>0
such that the measure flow (vs+)s>0 given by

asVs,t = diV(Vs,t bs,t)y s>0, Vot = V? S P2(Rp)a

satisfies that s — J7(vs,.) is decreasing.

» Relaxed Hamiltonian

He (x,p.m. ) = [ hulx.p.a.¢) m(ds) + 7 Ent(m)
he(x, p, a,C) := ¢e(x,a,C)p + fi(x, a,C)



Relaxed Stochastic Control and Deep Learning
» The goal is to find, for each t € [0, T] a vector field flow (bs ¢)s>0
such that the measure flow (vs+)s>0 given by

asVs,t = diV(Vs,t bs,t)y s>0, ,t = V? S P2(Rp)a
satisfies that s — J7(vs,.) is decreasing.
» Relaxed Hamiltonian

H (x, p,m, () == /ht(X,P, a, () m(da) + U;Ent(m)
he(x, p, 3, C) i= de(x, a,()p + fr(x, 2, C)
> The adjoint process PS(v) = (Vg) (XS (), €),

d'D&’q(V)t = —(Vth)(Xg’C(V)tv Ptu’g’g(’/),Vt) dt



Assumptions

Assumption 6

Jraxsllél? + ICPIM(dE, d¢) < oo.

¢, Voo, Vo, f, Vaf, Vif and Vg are all Lipschitz continuous in
(x, a), uniformly in (t,¢) € [0, T] X S. Moreover, x — V¢, Vif
and Vg are all continuously differentiable.

sp [ (960,08 +18:(0.0.0)F

te[0,T]

+ V£ (0,0, ) + | Va£(0, 0, ) ] M(dé, dC) < oc.




Pontryagin's principle

Theorem 5

Fix o > 0 and let the Assumption 1 hold. If v € V; is (locally) optimal
then it must solve the following system:

Ve = argmin / HZ (X5, PSS 1, ¢) M(dE, dC)
JRIxS

HEP(RP)
£

dXFC = O(XFC, v, ) dt, X§C =¢ € RY
dPEC = (VM) (XEC PEC i Q) e, PEC = (Vi) (X3,0).




Gradient Flow

Theorem 6

Fix ¢ > 0 and let the Assumption hold. Let X5:*, Pt* be the forward and
backward processes arising from data (&, () with control vs. € V,. Then

iJU(VS )=

/ /(/pdh ( : m)(Xu*Pst”’Sf’a QM(dg, dg))bst(a)us,t(da)dt.




Sketch of the Proof

The goal is to find, for each t € [0, T] a vector field flow (bs,t)s>0 such that The
measure flow (vs,¢)s>0 given by

85’/5,1: = diV(Vs,t bs,t): 520, vor = V? S P2(Rp):

satisfies that s — J7(vs,.) is decreasing.
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Sketch of the Proof

The goal is to find, for each t € [0, T] a vector field flow (bs,t)s>0 such that The
measure flow (vs,¢)s>0 given by

dsvs,t = div(vs,t bs,t), s>0, vor =1 € P2(RP),

satisfies that s — J7(vs,.) is decreasing.

Let Vs := %Xs,t. One can show that

Vs = [(vm)(xs,f,us,t,@vs,t _ / (Vo) (Kerts Vst 3, C) b e(3) vs.2(da) | e

Since the equation is affine we can solve it and its solution is

t
Vst = —/ /ef,t(vxd)F)(Xs,Fst,FvC)dF(Va(ﬁ,)(Xs,h a, () bs,r(a) vs,r(da) dr .
(0]
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Sketch of the Proof

Further we can show that

d - v NXe - v o) dF
EJ"(VS,',s,c):*/O / [(ng)(xs,T,C)ef’T(on')(Xs"’Us"’od'(va¢r)(xs,r,3,4)

o? (Vaus,t(a)

R
2 z/s,t(a)

+ VaU(a))} be.¢(a) vs,,(da) dt .
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Sketch of the Proof

Further we can show that

d - v NXe - v o) dF
EJ“(VS,',s,c)f/o / [(vxg)(xs,r,c)efr”vx"")(xw*"w’d'(vaqs,)(xs,,,a,o

o? (VaVs ,t(a)

HERNTNE)

- + VaU(a))} be.¢(a) vs,,(da) dt .

Now we define _
= (Vx8)(Xs, 7, Qe (Vx®nXarivari) o7

so that

d -
gl CERIST9)

/ / {(vaqbr)(xsr,a O)Ps,r + —(Va”s .1(2) +vaU(a))}bs,,(a)us,,(da) dr.

lls’t(a)



Sketch of the Proof

At this point it is clear how to choose the flow to make this negative: we must take

Vavs,t(a)

I/s’t(a)

2
bur(a) = [ (Vb )0 2, 0PEE M(de,d0) + 5 +V.U(a))
RIxS ’ ' 2

so that

d

—J% (vs,.

I (vs)

2

2
g (Laus’t(a) vs,r(da)dr

? l/syt(a) e vaU(a))

_ /0 ! / ‘ [ (72600, 2,00PES M(de, d) +
<0.
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Sketch of the Proof

At this point it is clear how to choose the flow to make this negative: we must take

Vavs,t(a)

I/s’t(a)

0.2
o) = [, (Tap K58 0P8 At )+ %
RIXS ’ ’

= + VaU(a))

so that

d

—J7 (vs,.
7w

T 2
—-f /‘/(W»)(Xfﬁ 2, C)PEEM(de, de) + L (M + vaU(a))
0 ’ ? 2
<0

2
vs,r(da)dr

llsyt(a)

with the choice of bs , made above vs. = L(0s,.)

dfs,t = — ( / (Vabe) (XS (L(Bs,.), 0s,t, ) PEC(L(0s,.)) M(dE, dC) — ”;uws,t)) ds+o dBs

33 /42



Assumption 7 (For existence, uniqueness and invariant
measure)

Let [ E[|69]9] dt < oo.
Let V,U be Lipschitz continuous in a and moreover let there k > 0
such that:

(V.U(@) — V,U(a)) - (a' — a) > kla’ — af?, a,a’ € R”.

Assume that either:

(x,¢) = Vg(x,¢) is bounded on RY x S,
or that (t, a, () — ¢:(0, a,¢) is bounded on [0, T] x R? x S and M
has compact support.




Theorem 7

Assume that J is bounded from below and that there exists U such that
J?(7) < oo and that o > 0. Then

argmin,, ¢y, J7(v) # 0,
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Theorem 7

Assume that J is bounded from below and that there exists U such that
J?(7) < oo and that o > 0. Then

argmin,, ¢y, J7(v) # 0,
if v* € argmin,y, J(v) then for a.a. t € (0, T) we have that

2 2
h:(a,v*, M) + % log(v*(a)) + %U(a) is constant for a.a. a € RP

and v* is an invariant measure for gradient flow PDE. Moreover,
if 0?k — 4L > 0 then v* is unique.
We have that for all s > 0 any L(6p,.)

WY (L£(0s.),v*)? < e W] (L(6..),v*)?.

he(a, i, M) = / he(XE< (1), PES (1), 3, )M(dE, dC)

JRIXS




Propagation of chaos
» Forse€[0,S], t€[0,T] and 1 < i < N, define
o, zagyt—/os ((v he) (0, 0%, MM+ T (v e )) dv + 0B,
where V2 = Niz ZjNél Og -
Theorem 8

S £(3+ T)+ L. Then, there exists c, independent of
s, Ny, Nb, p, d, such that, for all i

T N c 1 1
E — 9o <—(1—e)(—+—].
/0 |: s,t Os,t :| dt — )\( € ) <N1 + N2>

» The rate does not depend on the dimension!
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Euler Scheme

i i b~ o® i i
Ohire = O ((vaht) (B, M)+ G UL ) (si2-5) (B 1 L),

where v/\2 = ,& b1 Oz
Theorem 9

There exists ¢ > 0 independent of Ny, N>, p, d, such that, for all n > 0,

T
E 0] . — 0 [>dt < c max |s)—s_1]?,
i ’ 1<i<n

provided that o°k is large relative to LT.




Generalisation Error

» Recall the cost function

R TGt
+?/0 Ent(v:) dt

() vi(da) dt + g(X7*<.()

M(d¢, d()
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Generalisation Error

» Recall the cost function

M= [/ [ R 8, e+ g (X7, 0)| M, dC)

+U—/ Ent(v:) dt
2 (]

» In practice, one does not have access to population distribution M,
P N
but works with finite sample MM := N% Do Oen ciny
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Generalisation Error

» Recall the cost function

M= [/ [ R 8, e+ g (X7, 0)| M, dC)

+U—/ Ent(v:) dt
2 (]

» In practice, one does not have access to population distribution M,
P N
but works with finite sample MM := Nil Do Oen ciny

> Engineers use JM" (1) and NOT JoMm (1)) to set stopping criteria
for learning
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Generalisation Error

» Recall the cost function

M= [/ [ R 8, e+ g (X7, 0)| M, dC)

+U—/ Ent(v:) dt
2 (]

» In practice, one does not have access to population distribution M,
but works with finite sample MM := Nil Zﬁ’l S(en i)

> Engineers use JM" (1) and NOT JoMm (1)) to set stopping criteria
for learning

» The entropy term can be viewed as implicit regularisation



Theorem 10

Assume that o°r is sufficiently. Then there is ¢ > 0 independent of \, S,
Nl, NQ, d, P s.t

2 1 1
E DJM(V*~U) — M NA) ] <c <eA5 +—t+—+ h) ,
, Ni N

where h := maxg<s<s(s) — sj—1). The generalisation error is given by

JM(Vg:Nl’NQ’AS)

2 T
= Mg = M) = G [ Ene )+ min M),

since min ey, J7M(u) = J7M ().

» N - size of the training data

» N, - proxy to the the number of parameters

» ~ - learning rate; S/~ - proxy for training time

» By discretising ODEs we can get estimateson the number of layers




Assumption 8

Fix € >0 and Ny > 0. Assume that VMM, JM" (1*o:M) < ¢

Theorem 11
There is ¢ > 0 independent of \, S, Ny, N>, d, p s.t

2 11
E|[Meght) | <@ +c(e?S+—+ o +h).
? Nl N2
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