From the theory of (stochastic) control to deep learning and back - Part 3

Lukasz Szpruch University of Edinburgh, The Alan Turing Institute, London

We work with

▶ One hidden layer networks via gradient flow on $(\mathcal{P}_2(\mathbb{R}^d), \mathcal{W}_2)$

We work with

- lacktriangle One hidden layer networks via gradient flow on $(\mathcal{P}_2(\mathbb{R}^d),\mathcal{W}_2)$
- ▶ Neural ODEs via gradient flow on $(V_2, W_2^T(\mu, \nu))$, where

$$\mathcal{W}_q^{\mathsf{T}}(\mu,\nu) := \left(\int_0^{\mathsf{T}} \mathcal{W}_q(\mu_t,\nu_t)^q \, dt\right)^{1/q} \,.$$

$$\mathcal{V}_2:=\left\{
u:
u(extsf{dt}, extsf{da})=
u_t(extsf{da}) extsf{dt},\
u_t\in\mathcal{P}_2(\mathbb{R}^p),\ \int_0^T\ \int | extsf{a}|^2
u_t(extsf{da}) extsf{dt}<\infty
ight\},$$

We work with

- ▶ One hidden layer networks via gradient flow on $(\mathcal{P}_2(\mathbb{R}^d), \mathcal{W}_2)$
- Neural ODEs via gradient flow on $(V_2, W_2^T(\mu, \nu))$, where

$$\mathcal{W}_q^T(\mu,
u) := \left(\int_0^T \mathcal{W}_q(\mu_t,
u_t)^q \, dt
ight)^{1/q} \, .$$
 $\mathcal{V}_2 := \left\{
u :
u(dt,da) =
u_t(da)dt, \,
u_t \in \mathcal{P}_2(\mathbb{R}^p), \, \int_0^T \int |a|^2
u_t(da)dt < \infty
ight\},$

Neural SDEs via gradient flow on $(\mathcal{V}_q^W, \rho_q)$, where

$$ho_q(\mu,\mu') = \left(\mathbb{E}^W\left[|\mathcal{W}_q^T(\mu,\mu')|^q
ight]
ight)^{1/q}$$
 $\mathcal{V}_q^W := \left\{
u: \Omega^W o \mathcal{M}_q: \mathbb{E}^W\int_0^T\!\!\int |a|^q \,
u_t(extit{da}, extit{dt}) < \infty \, ext{ and }
u_t \in \mathcal{F}_t^W, \, orall t \in [0,T]
ight\}$

We work with

- ightharpoonup One hidden layer networks via gradient flow on $(\mathcal{P}_2(\mathbb{R}^d), \mathcal{W}_2)$
- ▶ Neural ODEs via gradient flow on $(V_2, W_2^T(\mu, \nu))$, where

$$\mathcal{W}_q^T(\mu,
u) := \left(\int_0^T \mathcal{W}_q(\mu_t,
u_t)^q dt\right)^{1/q}.$$

$$\mathcal{V}_2:=\left\{
u:
u(dt,da)=
u_t(da)dt,\
u_t\in\mathcal{P}_2(\mathbb{R}^p),\ \int_0^{\mathcal{T}}\ \int |a|^2
u_t(da)dt<\infty
ight\},$$

Neural SDEs via gradient flow on $(\mathcal{V}_q^W, \rho_q)$, where

$$ho_q(\mu,\mu') = \left(\mathbb{E}^W\left[|\mathcal{W}_q^T(\mu,\mu')|^q
ight]\right)^{1/q}$$

$$\mathcal{V}_q^W := \left\{
u: \Omega^W o \mathcal{M}_q: \mathbb{E}^W \int_0^T\!\!\int |a|^q \,
u_t(\mathit{da},\mathit{dt}) < \infty \;\; \mathsf{and} \;\;
u_t \in \mathcal{F}_t^W, \; \forall t \in [0,T] \right\}$$

 \triangleright $(\mathcal{V}_q^W, \rho_q)$ is complete.

Gradient Flows for Regularized Stochastic Control Problems

For $\xi \in \mathbb{R}^d$ and $\mu \in \mathcal{V}_q^W$, consider the controlled process

$$X_t(\mu) = \xi + \int_0^t \Phi_r(X_r(\mu), \mu_r) dr + \int_0^t \Gamma_r(X_r(\mu), \mu_r) dW_r, \ t \in [0, T].$$

For $\xi \in \mathbb{R}^d$ and $\mu \in \mathcal{V}_q^W$, consider the controlled process

$$X_{t}(\mu) = \xi + \int_{0}^{t} \Phi_{r}(X_{r}(\mu), \mu_{r}) dr + \int_{0}^{t} \Gamma_{r}(X_{r}(\mu), \mu_{r}) dW_{r}, \quad t \in [0, T].$$

Given F and g we define the objective functional

$$J^{\sigma}(\nu,\xi) := \mathbb{E}^{W}\left[\int_{0}^{T}\left[F_{t}(X_{t}(\nu),\nu_{t}) + \frac{\sigma^{2}}{2}\mathsf{Ent}(\nu_{t})\right]dt + g(X_{T}(\nu))\Big|X_{0}(\nu) = \xi\right].$$

$$\mathsf{Ent}(m) := \begin{cases} \int_{\mathbb{R}^d} m(x) \log \left(\frac{m(x)}{g(x)} \right) dx & \text{if } m \text{ is a.c. w.r.t. Lebesgue measure} \\ \infty & \text{otherwise} \end{cases}$$

and Gibbs measure g:

$$g(x)=e^{-U(x)}$$
 with U s.t. $\int_{\mathbb{R}^d}e^{-U(x)}\,dx=1$.

For $\xi \in \mathbb{R}^d$ and $\mu \in \mathcal{V}_q^W$, consider the controlled process

$$X_t(\mu) = \xi + \int_0^t \Phi_r(X_r(\mu), \mu_r) dr + \int_0^t \Gamma_r(X_r(\mu), \mu_r) dW_r, \ \ t \in [0, T].$$

Given F and g we define the objective functional

$$J^{\sigma}(\nu,\xi) := \mathbb{E}^{W}\left[\int_{0}^{T}\left[F_{t}(X_{t}(\nu),\nu_{t}) + \frac{\sigma^{2}}{2}\mathsf{Ent}(\nu_{t})\right]dt + g(X_{T}(\nu))\Big|X_{0}(\nu) = \xi\right].$$

$$\mathsf{Ent}(m) := \begin{cases} \int_{\mathbb{R}^d} m(x) \log \left(\frac{m(x)}{g(x)} \right) dx & \text{if m is a.c. w.r.t. Lebesgue measure} \\ \infty & \text{otherwise} \end{cases}$$

and Gibbs measure g:

$$g(x)=e^{-U(x)}$$
 with U s.t. $\int_{\mathbb{R}^d}e^{-U(x)}\,dx=1$.

Example - Relaxed Control

$$\Phi_t(x,m) = \int \phi_t(x,a) m(da) \,, \text{ and } \quad \Gamma_t(x,m) (\Gamma_t(x,m))^\top = \int \gamma_t(x,a) \gamma_t(x,a)^\top m(da)$$

- DPP and HJB equation
 - ► Solve nonlinear PDE or corresponding (2)BSDE
 - 'Linearise' with policy or value iteration and solve linear PDE [Kerimkulov et al., 2020, Gobet and Labart, 2010]
- ► Maximum principle
 - Solve the corresponding non-Markov FBSDE.

- ▶ DPP and HJB equation
 - ► Solve nonlinear PDE or corresponding (2)BSDE
 - Linearise' with policy or value iteration and solve linear PDE [Kerimkulov et al., 2020, Gobet and Labart, 2010]
- Maximum principle
 - Solve the corresponding non-Markov FBSDE.

Motivation to study gradient flow solution for stochastic control problem

Aiming at solving high-dimensional control problems

- ▶ DPP and HJB equation
 - ► Solve nonlinear PDE or corresponding (2)BSDE
 - Linearise' with policy or value iteration and solve linear PDE [Kerimkulov et al., 2020, Gobet and Labart, 2010]
- Maximum principle
 - Solve the corresponding non-Markov FBSDE.

Motivation to study gradient flow solution for stochastic control problem

- Aiming at solving high-dimensional control problems
- Building algorithms for adaptive stochastic control (data-driven problems)

- ▶ DPP and HJB equation
 - ► Solve nonlinear PDE or corresponding (2)BSDE
 - Linearise' with policy or value iteration and solve linear PDE [Kerimkulov et al., 2020, Gobet and Labart, 2010]
- Maximum principle
 - Solve the corresponding non-Markov FBSDE.

Motivation to study gradient flow solution for stochastic control problem

- Aiming at solving high-dimensional control problems
- Building algorithms for adaptive stochastic control (data-driven problems)
- Bridging the gap between stochastic control and Reinforcment learning.

Let us now introduce the Hamiltonian

$$H_t^{\sigma}(x,y,z,m) := \Phi_t(x,m)y + \operatorname{tr}(\Gamma_t^{\top}(x,m)z) + F_t(x,m) + \frac{\sigma^2}{2}\operatorname{Ent}(m).$$

Let us now introduce the Hamiltonian

$$H_t^{\sigma}(x,y,z,m) := \Phi_t(x,m)y + \operatorname{tr}(\Gamma_t^{\top}(x,m)z) + F_t(x,m) + \frac{\sigma^2}{2}\operatorname{Ent}(m)$$
.

We will also use the adjoint process

$$dY_{t}(\mu) = -(\nabla_{x}H_{t}^{0})(X_{t}(\mu), Y_{t}(\mu), Z_{t}(\mu), \mu_{t}) dt + Z_{t}(\mu) dW_{t}, \quad t \in [0, T],$$

$$Y_{T}(\mu) = (\nabla_{x}g)(X_{T}(\mu))$$

Theorem 1 (Necessary condition for optimality)

Fix $\sigma > 0$. Fix q > 2. If $\nu \in \mathcal{V}_q^W$ is (locally) optimal for $J^{\sigma}(\cdot, \xi)$, $X(\nu)$ and $Y(\nu)$, $Z(\nu)$ are the associated optimally controlled state and adjoint processes respectively, then for any other $\mu \in \mathcal{V}_q^W$ it holds that

ij

$$\int \frac{\delta H^{\sigma}}{\delta m}(X_t(\nu),Y_t(\nu),Z_t(\nu),\nu_t,a)\,(\mu_t-\nu_t)(\text{da})\geq 0 \ \text{a.a.}\ (\omega,t)\in\Omega^W\times(0,T)$$

ii) For a.a. $(\omega, t) \in \Omega^W \times (0, T)$ there exists $\varepsilon > 0$ (small and depending on μ_t) such that

$$H^{\sigma}(X_t(\nu),Y_t(\nu),Z_t(\nu),\nu_t+\varepsilon(\mu_t-\nu_t))\geq H^{\sigma}(X_t(\nu),Y_t(\nu),Z_t(\nu),\nu_t)\,.$$

In other words, the optimal relaxed control $\nu \in \mathcal{V}_q^W$ locally minimizes the Hamiltonian.

Let

$$rac{\delta \mathbf{H}_t^{\sigma}}{\delta m}(a,\mu) = rac{\delta \mathbf{H}_t^0}{\delta m}(a,\mu) + rac{\sigma^2}{2}\left(U(a) + \log \mu_t(a) + 1
ight)\,.$$

Let

$$rac{\delta \mathbf{H}_t^{\sigma}}{\delta m}(a,\mu) = rac{\delta \mathbf{H}_t^0}{\delta m}(a,\mu) + rac{\sigma^2}{2} \left(U(a) + \log \mu_t(a) + 1
ight) \,.$$

Consider

$$d\theta_{s,t} = - \left((\nabla_a \frac{\delta H_t^0}{\delta m}) (X_{s,t}, Y_{s,t}, Z_{s,t}, \theta_{s,t}) + \frac{\sigma^2}{2} (\nabla_a U) (\theta_{s,t}) \right) ds + \sigma dB_s \,, \quad s \geq 0 \,,$$

where

$$\begin{cases} \nu_{s,t} &= \mathcal{L}(\theta_{s,t} | \mathcal{F}_t^W), \\ X_{s,t} &= \xi + \int_0^t \Phi_r(X_{s,r}, \nu_{s,r}) dr + \int_0^t \Gamma_r(X_{s,r}, \nu_{s,r}(da)) dW_r, \ t \in [0, T], \\ dY_{s,t} &= -(\nabla_x H_t^0)(X_{s,t}, Y_{s,t}, Z_{s,t}, \nu_{s,t}) dt + Z_{s,t} dW_t, \\ Y_{s,T} &= (\nabla_x g)(X_T). \end{cases}$$

Let

$$\frac{\delta \mathbf{H}_t^{\sigma}}{\delta m}(a,\mu) = \frac{\delta \mathbf{H}_t^0}{\delta m}(a,\mu) + \frac{\sigma^2}{2} \left(U(a) + \log \mu_t(a) + 1 \right) .$$

Consider

$$d\theta_{s,t} = -\left((\nabla_a \frac{\delta H_t^0}{\delta m})(X_{s,t}, Y_{s,t}, Z_{s,t}, \theta_{s,t}) + \frac{\sigma^2}{2}(\nabla_a U)(\theta_{s,t})\right) ds + \sigma dB_s, \quad s \geq 0,$$

where

$$\begin{cases} \nu_{s,t} &= \mathcal{L}(\theta_{s,t} | \mathcal{F}_t^W), \\ X_{s,t} &= \xi + \int_0^t \Phi_r(X_{s,r}, \nu_{s,r}) dr + \int_0^t \Gamma_r(X_{s,r}, \nu_{s,r}(da)) dW_r, \ t \in [0, T], \\ dY_{s,t} &= -(\nabla_x H_t^0)(X_{s,t}, Y_{s,t}, Z_{s,t}, \nu_{s,t}) dt + Z_{s,t} dW_t, \\ Y_{s,T} &= (\nabla_x g)(X_T). \end{cases}$$

We have

$$\int_0^T rac{d}{ds} J(
u_{s,\cdot}) = -\mathbb{E}^W \int_0^T \left[\int \left| (
abla_a rac{\delta \mathbf{H}_t^{\sigma}}{\delta m}) (\cdot,
u_{s,t})
ight|^2
u_{s,t}(da) \right] dt \leq 0.$$

Assumption :

Let $\nabla_a U$ be Lipschitz continuous in a and let there be $\kappa > 0$ such that:

$$\left(\nabla_a U(a') - \nabla_a U(a)\right) \cdot \left(a' - a\right) \geq \kappa |a' - a|^2, \ a, a' \in \mathbb{R}^p \,.$$

Assumption 1

Let $\nabla_a U$ be Lipschitz continuous in a and let there be $\kappa > 0$ such that:

$$\left(\nabla_a U(a') - \nabla_a U(a)\right) \cdot \left(a' - a\right) \geq \kappa |a' - a|^2, \ a, a' \in \mathbb{R}^p \,.$$

Assumption 2

Assume that there exists $\eta_1,\eta_2\in\mathbb{R}$, $\bar{\eta}\in L^{q/2}(\Omega^W\times(0,T);\mathbb{R})$ and $\mathcal{E}:\mathcal{V}_q^W\times\mathcal{V}_q^W\to[0,\infty)$ s.t for any $a\in\mathbb{R}^p$, $\mu\in\mathcal{V}_2^W$, $t\in[0,T]$ we have

$$\Big(\nabla_{a}\frac{\delta \mathbf{H}_{t}^{0}}{\delta m}\Big)(a,\mu)a\geq \eta_{1}|a|^{2}-\eta_{2}\mathcal{E}_{t}(\mu,\delta_{0})^{2}-\bar{\eta}_{t}$$

and for all $\mu, \mu' \in \mathcal{V}_q^W$ we have $\mathbb{E}^W \left[\int_0^T \mathcal{E}_t(\mu, \mu')^q \, dt \right] \leq \rho_q(\mu, \mu')^q$.

Assumption 1

Let $\nabla_a U$ be Lipschitz continuous in a and let there be $\kappa > 0$ such that:

$$\left(\nabla_a U(a') - \nabla_a U(a)\right) \cdot \left(a' - a\right) \geq \kappa |a' - a|^2, \ a, a' \in \mathbb{R}^p \,.$$

Assumption 2

Assume that there exists $\eta_1,\eta_2\in\mathbb{R}$, $\bar{\eta}\in L^{q/2}(\Omega^W\times(0,T);\mathbb{R})$ and $\mathcal{E}:\mathcal{V}_q^W\times\mathcal{V}_q^W\to[0,\infty)$ s.t for any $a\in\mathbb{R}^p$, $\mu\in\mathcal{V}_2^W$, $t\in[0,T]$ we have

$$\Big(\nabla_{a}\frac{\delta \mathbf{H}_{t}^{0}}{\delta m}\Big)(a,\mu)a \geq \eta_{1}|a|^{2} - \eta_{2}\mathcal{E}_{t}(\mu,\delta_{0})^{2} - \bar{\eta}_{t}$$

and for all $\mu, \mu' \in \mathcal{V}_q^W$ we have $\mathbb{E}^W \left[\int_0^T \mathcal{E}_t(\mu, \mu')^q dt \right] \leq \rho_q(\mu, \mu')^q$.

Assumption 3

There exists $\eta_1, \eta_2 \in \mathbb{R}$ and $\mathcal{E}: \mathcal{V}_q^W \times \mathcal{V}_q^W \to [0, \infty)$ s.t all $t \in [0, T]$, for all a, a' and for all $\mu, \mu' \in \mathcal{V}_q^W$ we have $\mathbb{E}^W \big[\int_0^T \mathcal{E}_t(\mu, \mu')^q \ dt \big] \leq \rho_q(\mu, \mu')^q$ and

$$2\bigg((\nabla_a \frac{\delta \mathbf{H}_t^0}{\delta m})(a',\mu') - (\nabla_a \frac{\delta \mathbf{H}_t^0}{\delta m})(a,\mu)\bigg)(a'-a) \geq \eta_1 |a'-a|^2 - \eta_2 \mathcal{E}_t(\mu',\mu)^2 \ .$$

Let $P_s\mu^0:=(P_{s,t}\mu^0)_{t\in[0,T]}$. Moreover note that due to uniqueness we have $P_{s+s'}\mu^0=P_s(P_{s'}\mu^0)$.

Let $P_s\mu^0:=(P_{s,t}\mu^0)_{t\in[0,T]}$. Moreover note that due to uniqueness we have $P_{s+s'}\mu^0=P_s(P_{s'}\mu^0)$.

Theorem 2

Let Assumptions 1 and 3 hold. Moreover, assume that $\lambda=\frac{q}{2}\left(\sigma^2\kappa+\eta_1-\eta_2\right)>0$. Then there is $\mu^*\in\mathcal{V}_q^W$ such that for any $s\geq 0$ we have $P_s\mu^*=\mu^*$ and μ^* is unique. For any $\mu^0\in\mathcal{V}_q^W$ we have that

$$\rho_q(P_s\mu^0,\mu^*) \leq e^{-\frac{1}{q}\lambda s}\rho_q(\mu^0,\mu^*).$$

Theorem 3

Assume that for any $\mu^0 \in \mathcal{V}_q^W$ the MFLD has unique solution $P_s\mu^0$ and that it admits unique invariant measure $\mu^* \in \mathcal{V}_q^W$ such that for any $\mu^0 \in \mathcal{V}_q^W$, $\lim_{s \to \infty} \rho_q(P_s\mu^0, \mu^*) = 0$. Let

$$\mathcal{I}^{\sigma} := \left\{ \nu \in \mathcal{V}_{q}^{W} : \frac{\delta \mathbf{H}_{t}^{\sigma}}{\delta m}(a, \nu) \text{ is constant for a.a. } a, t, \omega^{W} \right\}. \tag{1}$$

Then

- i) We have $J^{\sigma}(\mu^*) < \infty$ and $\mathcal{I}^{\sigma} = \{\mu^*\}$. In other words, μ^* is the only control which satisfies the first order condition in (1).
- ii) The unique minimizer of J^{σ} is μ^* .

Theorem 3

Assume that for any $\mu^0 \in \mathcal{V}_q^W$ the MFLD has unique solution $P_s\mu^0$ and that it admits unique invariant measure $\mu^* \in \mathcal{V}_q^W$ such that for any $\mu^0 \in \mathcal{V}_q^W$, $\lim_{s \to \infty} \rho_q(P_s\mu^0, \mu^*) = 0$. Let

$$\mathcal{I}^{\sigma} := \left\{ \nu \in \mathcal{V}_{q}^{W} : \frac{\delta \mathbf{H}_{t}^{\sigma}}{\delta m}(a, \nu) \text{ is constant for a.a. } a, t, \omega^{W} \right\}. \tag{1}$$

Then

- i) We have $J^{\sigma}(\mu^*) < \infty$ and $\mathcal{I}^{\sigma} = \{\mu^*\}$. In other words, μ^* is the only control which satisfies the first order condition in (1).
- ii) The unique minimizer of J^{σ} is μ^* .

Recall that if $\nu \in I^{\sigma}$ then

$$u_t = Z^{-1} e^{rac{-2}{\sigma^2}rac{\delta H_0^0}{\delta m}(X_t,Y_t,Z_t,
u_t,a)} \gamma(a) \,, \quad Z = \int e^{rac{-2}{\sigma^2}rac{\delta H_0^0}{\delta m}(X_t,Y_t,Z_t,
u_t,a)} \gamma(a) da \,,$$

Step 1: Show that $I^{\sigma}=\{\mu^*\}$

Step 1: Show that $I^{\sigma} = \{\mu^*\}$

Fix $t \in [0, T]$ and $\omega^W \in \Omega^W$.

Step 1: Show that $I^{\sigma} = \{\mu^*\}$

Fix $t \in [0, T]$ and $\omega^W \in \Omega^W$.

Let
$$b_{s,t}(a) := (\nabla_a \frac{\delta \mathbf{H}_t^0}{\delta m})(a,\mu_s) + \frac{\sigma^2}{2}(\nabla_a U)(a)$$
 and $\mu_{s,t} = \mathcal{L}(\theta_{s,t}|\mathcal{F}_t^W)$.

 $\mu_{s,t}$ is a solution to

$$\partial_s \mu_{s,t} =
abla_{s} \cdot \left(b_{s,t} \mu_{s,t} + rac{\sigma^2}{2}
abla_{s} \mu_{s,t}
ight), \;\; s \geq 0 \,, \;\; \mu_{s,0} = \mu_t^0 := \mathcal{L}(heta_{0,t} | \mathcal{F}_t^W) \,.$$

Step 1: Show that $I^{\sigma} = \{\mu^*\}$

Fix $t \in [0, T]$ and $\omega^W \in \Omega^W$.

Let
$$b_{s,t}(a) := (\nabla_a \frac{\delta \mathbf{H}_t^0}{\delta m})(a, \mu_s) + \frac{\sigma^2}{2}(\nabla_a U)(a)$$
 and $\mu_{s,t} = \mathcal{L}(\theta_{s,t}|\mathcal{F}_t^W)$.

 $\mu_{s,t}$ is a solution to

$$\partial_s \mu_{s,t} =
abla_{s} \cdot \left(b_{s,t} \mu_{s,t} + rac{\sigma^2}{2}
abla_{a} \mu_{s,t}
ight), \;\; s \geq 0 \,, \;\; \mu_{s,0} = \mu_t^0 := \mathcal{L}(heta_{0,t} | \mathcal{F}_t^W) \,.$$

The solution is unique and $P_s\mu^0=\mu_{s,\cdot}$ so P_s is the solution operator.

Since μ^* is an invariant measure for almost all $t \in [0, T]$ and $\omega^W \in \Omega^W$ we have $(P_s\mu^*)_t = \mu_t^*$ and so $\partial_s\mu_{s,t}^* = 0$.

Since μ^* is an invariant measure for almost all $t \in [0, T]$ and $\omega^W \in \Omega^W$ we have $(P_s\mu^*)_t = \mu_t^*$ and so $\partial_s\mu_{s,t}^* = 0$.

Hence for almost all $t \in [0, T]$ and $\omega^W \in \Omega^W$ we have that μ_t^* is the solution to the stationary Kolmogorov–Fokker–Planck equation

$$0 = \nabla_{\mathbf{a}} \cdot \left(\left(\left(\nabla_{\mathbf{a}} \frac{\delta \mathbf{H}_{t}^{0}}{\delta m} \right) (\cdot, \mu^{*}) + \frac{\sigma^{2}}{2} (\nabla_{\mathbf{a}} U) \right) \mu_{t}^{*} + \frac{\sigma^{2}}{2} \nabla_{\mathbf{a}} \mu_{t}^{*} \right). \tag{2}$$

This implies that $\mu^* \in \mathcal{I}^{\sigma}$.

Since μ^* is an invariant measure for almost all $t \in [0, T]$ and $\omega^W \in \Omega^W$ we have $(P_s\mu^*)_t = \mu_t^*$ and so $\partial_s\mu_{s,t}^* = 0$.

Hence for almost all $t \in [0, T]$ and $\omega^W \in \Omega^W$ we have that μ_t^* is the solution to the stationary Kolmogorov–Fokker–Planck equation

$$0 = \nabla_{\mathbf{a}} \cdot \left(\left(\left(\nabla_{\mathbf{a}} \frac{\delta \mathbf{H}_{t}^{0}}{\delta m} \right) (\cdot, \mu^{*}) + \frac{\sigma^{2}}{2} (\nabla_{\mathbf{a}} U) \right) \mu_{t}^{*} + \frac{\sigma^{2}}{2} \nabla_{\mathbf{a}} \mu_{t}^{*} \right). \tag{2}$$

This implies that $\mu^* \in \mathcal{I}^{\sigma}$.

Consider now some $\nu \in \mathcal{I}^{\sigma}$. Then

$$u_t(a) = Z^{-1} e^{-rac{2}{\sigma^2} rac{\delta \mathsf{H}_t^0}{\delta m}(a,
u)} g(a),$$

Since μ^* is an invariant measure for almost all $t \in [0, T]$ and $\omega^W \in \Omega^W$ we have $(P_s\mu^*)_t = \mu^*_t$ and so $\partial_s\mu^*_{s,t} = 0$.

Hence for almost all $t \in [0, T]$ and $\omega^W \in \Omega^W$ we have that μ_t^* is the solution to the stationary Kolmogorov–Fokker–Planck equation

$$0 = \nabla_{\mathbf{a}} \cdot \left(\left(\left(\nabla_{\mathbf{a}} \frac{\delta \mathbf{H}_{t}^{0}}{\delta m} \right) (\cdot, \mu^{*}) + \frac{\sigma^{2}}{2} (\nabla_{\mathbf{a}} U) \right) \mu_{t}^{*} + \frac{\sigma^{2}}{2} \nabla_{\mathbf{a}} \mu_{t}^{*} \right). \tag{2}$$

This implies that $\mu^* \in \mathcal{I}^{\sigma}$.

Consider now some $\nu \in \mathcal{I}^{\sigma}$. Then

$$\nu_t(a) = Z^{-1} e^{-\frac{2}{\sigma^2} \frac{\delta \mathsf{H}_t^0}{\delta m}(a,\nu)} g(a),$$

We see that almost all $t \in [0, T]$ and $\omega^W \in \Omega^W$ we have that ν_t solves (2). But the solution to (2) is unique and so $\nu = \mu^*$. This proves item i).

Step 2: Show that the unique minimizer of J^{σ} is μ^* .

Step 2: Show that the unique minimizer of J^{σ} is μ^* .

We will show by contradiction that μ^* is at least (locally) optimal. Assume that μ^* is not the (locally) optimal control for J^{σ} .

Step 2: Show that the unique minimizer of J^{σ} is μ^* .

We will show by contradiction that μ^* is at least (locally) optimal. Assume that μ^* is not the (locally) optimal control for J^{σ} .

Then for some $\mu^0 \in \mathcal{V}_2^W$ it holds that $J^{\sigma}(\mu^0) < J^{\sigma}(\mu^*)$.

Step 2: Show that the unique minimizer of J^{σ} is μ^* .

We will show by contradiction that μ^* is at least (locally) optimal. Assume that μ^* is not the (locally) optimal control for J^{σ} .

Then for some $\mu^0 \in \mathcal{V}_2^W$ it holds that $J^{\sigma}(\mu^0) < J^{\sigma}(\mu^*)$.

On the other we know that $\lim_{s\to\infty}P_s\mu^0=\mu^*$. From the lower semi-continuity of J^σ we get

$$\begin{split} J^{\sigma}(\mu^*) - J^{\sigma}(\mu^0) &\leq \liminf_{s \to \infty} J^{\sigma}(P_s \mu^0) - J^{\sigma}(\mu^0) \\ &= -\liminf_{s \to \infty} \int_0^s \mathbb{E}^W \int_0^T \left[\int \left| \left(\nabla_a \frac{\delta \mathbf{H}^{\sigma}}{\delta m} \right) (a, (P_s \mu^0)_t) \right|^2 (P_s \mu^0)_t (da) \right] dt ds \\ &\leq 0 \,. \end{split}$$

This is a contradiction and so μ^* must be (locally) optimal.

Can there be any other (locally) optimal control $\nu^* \in \mathcal{V}_2^W$ that is not $\nu^* \notin \mathcal{I}^\sigma$?

Can there be any other (locally) optimal control $\nu^* \in \mathcal{V}_2^W$ that is not $\nu^* \notin \mathcal{I}^{\sigma}$?

For any other (locally) optimal control $\nu^* \in \mathcal{V}_2^W$ we have for any $\nu \in \mathcal{V}_2^W$, due to necessary condtion that

$$0 \leq \mathbb{E}^W igg[\int_0^T \int rac{\delta \mathbf{H}_t^\sigma}{\delta m}(a,
u^*) (
u_t -
u_t^*) (da) \, dt igg] \, .$$

It is easy to show that this implies that $u^* \in \mathcal{I}^{\sigma}$

Can there be any other (locally) optimal control $\nu^* \in \mathcal{V}_2^W$ that is not $\nu^* \notin \mathcal{I}^{\sigma}$?

For any other (locally) optimal control $\nu^* \in \mathcal{V}_2^W$ we have for any $\nu \in \mathcal{V}_2^W$, due to necessary condtion that

$$0 \leq \mathbb{E}^W igg[\int_0^T \int rac{\delta \mathbf{H}_t^\sigma}{\delta m}(a,
u^*) (
u_t -
u_t^*) (da) \, dt igg] \, .$$

It is easy to show that this implies that $\nu^* \in \mathcal{I}^\sigma$

But we have already shown that $\mathcal{I}^{\sigma}=\{\mu^*\}$ and so the set of local minimizers is a singleton and thus μ^* is the global minimizer of J^{σ} and item ii) is proved.

Recovering Markovian Control

Lemma 4

Assume that for any $m, m' \in \mathcal{V}_q^W$ it holds that

$$F(x,(1-\alpha)m+\alpha m') \leq (1-\alpha)F(x,m) + \alpha F(x,m') \ \ \text{for all} \ \ \alpha \in [0,1] \ \ \text{and} \ \ x \in \mathbb{R}^d \ .$$

Further assume that there exists ϕ and γ , are such that

$$\Phi_t(x,m) = \int \phi_t(x,a) m(da) \ \Gamma_t(x,m) (\Gamma_t(x,m))^\top = \int \gamma_t(x,a) \gamma_t(x,a)^\top m(da).$$

Define Markov control $\hat{\nu}_t(a,x) := \mathbb{E}^W[\nu_t(a)|X_t(\nu) = x]$. Then

$$J^{\sigma}(\nu,\xi)=J^{\sigma}(\hat{\nu},\xi)$$
.

Define

$$\begin{split} \hat{\Phi}_t(x,\hat{\nu}_t) := & \int \phi_t(x,a)\hat{\nu}_t(da,x)\,, \\ \hat{\Gamma}_t(x,\hat{\nu}_t)\hat{\Gamma}_t(x,\hat{\nu}_t)^\top := & \int \gamma_t(x,a)\gamma_t(x,a)^\top\hat{\nu}_t(da,x)\,. \end{split}$$

The mimicking theorem states that there is exists a weak solution to

$$\hat{X}_t(\hat{\nu}) = \xi + \int_0^t \hat{\Phi}_r(\hat{X}_r(\hat{\nu}), \hat{\nu}_r) \, dr + \int_0^t \hat{\Gamma}_r(\hat{X}_r(\hat{\nu}), \hat{\nu}_r) \, d\hat{W}_r \,, \ t \in [0, T] \,,$$

and $\mathcal{L}(\hat{X}_t) = \mathcal{L}(X_t(\mu))$ for all $t \in [0, T]$. This is a controlled Markov process.

Define

$$\hat{\Phi}_t(x,\hat{\nu}_t) := \int \phi_t(x,a)\hat{\nu}_t(da,x),$$

$$\hat{\Gamma}_t(x,\hat{\nu}_t)\hat{\Gamma}_t(x,\hat{\nu}_t)^\top := \int \gamma_t(x,a)\gamma_t(x,a)^\top\hat{\nu}_t(da,x).$$

The mimicking theorem states that there is exists a weak solution to

$$\hat{X}_t(\hat{\nu}) = \xi + \int_0^t \hat{\Phi}_r(\hat{X}_r(\hat{\nu}), \hat{\nu}_r) \, dr + \int_0^t \hat{\Gamma}_r(\hat{X}_r(\hat{\nu}), \hat{\nu}_r) \, d\hat{W}_r \,, \ \, t \in [0, T] \,,$$

and $\mathcal{L}(\hat{X}_t) = \mathcal{L}(X_t(\mu))$ for all $t \in [0, T]$. This is a controlled Markov process.

First note that, by convexity of entropy and due to Jensen's inequality

$$\int \log(\hat{\nu}_t(a,x))\hat{\nu}_t(a,x)da \leq \int \mathbb{E}^W \left[\log(\nu_t(a))\nu_t(a)|X_t=x\right]da.$$

Define

$$\hat{\Phi}_t(x,\hat{\nu}_t) := \int \phi_t(x,a)\hat{\nu}_t(da,x),$$

$$\hat{\Gamma}_t(x,\hat{\nu}_t)\hat{\Gamma}_t(x,\hat{\nu}_t)^\top := \int \gamma_t(x,a)\gamma_t(x,a)^\top\hat{\nu}_t(da,x).$$

The mimicking theorem states that there is exists a weak solution to

$$\hat{X}_t(\hat{\nu}) = \xi + \int_0^t \hat{\Phi}_r(\hat{X}_r(\hat{\nu}), \hat{\nu}_r) dr + \int_0^t \hat{\Gamma}_r(\hat{X}_r(\hat{\nu}), \hat{\nu}_r) d\hat{W}_r, \ \ t \in [0, T],$$

and $\mathcal{L}(\hat{X}_t) = \mathcal{L}(X_t(\mu))$ for all $t \in [0, T]$. This is a controlled Markov process.

First note that, by convexity of entropy and due to Jensen's inequality

$$\int \log(\hat{\nu}_t(a,x))\hat{\nu}_t(a,x)da \leq \int \mathbb{E}^W \left[\log(\nu_t(a))\nu_t(a)|X_t=x\right]da.$$

Since $\mathcal{L}(\hat{X}_t) = \mathcal{L}(X_t(\nu))$ and F is convex, we have

$$\begin{split} J^{\sigma}(\hat{\nu},\xi) := & \mathbb{E}^{\hat{W}} \left[\int_{0}^{T} \left[F_{t}(\hat{X}_{t},\hat{\nu}_{t}(\cdot,\hat{X}_{t})) + \frac{\sigma^{2}}{2} \mathsf{Ent}(\nu_{t}(\cdot,\hat{X}_{t})) \right] \, dt + g(\hat{X}_{T}) \Big| \hat{X}_{0} = \xi \right] \\ = & \mathbb{E}^{W} \left[\int_{0}^{T} \left[F_{t}(X_{t},\hat{\nu}_{t}(\cdot,X_{t})) + \frac{\sigma^{2}}{2} \mathsf{Ent}(\hat{\nu}_{t}(\cdot,X_{t})) \right] \, dt + g(X_{T}) \Big| X_{0}(\nu) = \xi \right] \\ \leq & \mathbb{E}^{W} \left[\int_{0}^{T} \int \mathbb{E} \left[F_{t}(X_{t},\nu_{t}) + \frac{\sigma^{2}}{2} \mathsf{Ent}(\nu_{t}) | X_{t} \right] \, dt + g(X_{T}) \Big| X_{0} = \xi \right] = J^{\sigma}(\nu,\xi) \, . \end{split}$$

Since we always have $J^{\sigma}(\nu,\xi) \leq J^{\sigma}(\hat{\nu},\xi)$ the conclusion follows.

Regularity of Control

$$\begin{cases} \nu_t^* &= \operatorname{argmin}_{\nu \in \mathcal{V}_q} H_t^{\sigma}(X_t, Y_t, Z_t, \nu), \\ X_t &= \xi + \int_0^t \int \Phi_r(X_r, \nu_r^*) \, dr + \int_0^t \int \Gamma_r(X_r, \nu_r^*(da)) \, dW_r \,, \quad t \in [0, T] \,, \\ Y_t &= (\nabla_x g)(X_T) + \int_t^T (\nabla_x H_r)(X_r, Y_r, Z_r, \nu_r^*) \, dr + \int_t^T Z_r \, dW_r \,. \end{cases}$$

If (Y,Z) where Markov, then we would have that $u^* \in \mathcal{V}_q^M$ (Markov).

Regularity of Control

$$\begin{cases} \nu_t^* &= \operatorname{argmin}_{\nu \in \mathcal{V}_q} H_t^{\sigma}(X_t, Y_t, Z_t, \nu), \\ X_t &= \xi + \int_0^t \int \Phi_r(X_r, \nu_r^*) \, dr + \int_0^t \int \Gamma_r(X_r, \nu_r^*(da)) \, dW_r \,, \ \ t \in [0, T] \,, \\ Y_t &= (\nabla_x g)(X_T) + \int_t^T (\nabla_x H_r)(X_r, Y_r, Z_r, \nu_r^*) \, dr + \int_t^T Z_r \, dW_r \,. \end{cases}$$

If (Y, Z) where Markov, then we would have that $\nu^* \in \mathcal{V}_q^M$ (Markov).

We proceed by iteration. Let $u^0 \in \mathcal{V}_q^{X,W^2}$. For $n \geq 0$ define

$$\begin{cases} \nu_t^{n+1} &= Z^{-1} e^{\frac{-2}{\sigma^2} \frac{\delta H_t^0}{\delta m} (X_t^n, Y_t^n, Z_t^n, \nu_t^n, a)} \gamma(a) \,, \quad Z = \int e^{\frac{-2}{\sigma^2} \frac{\delta H_t^0}{\delta m} (X_t^n, Y_t^n, Z_t^n, \nu_t^n, a)} \gamma(a) da \,, \\ X_t^n &= \xi + \int_0^t \int \Phi_r(X_r^n, \nu_r^n) \, dr + \int_0^t \int \Gamma_r(X_r^n, \nu_r^n) \, dW_r \,, \quad t \in [0, T] \,, \\ Y_t^n &= (\nabla_x g)(X_T^n) + \int_t^T (\nabla_x H_r^0)(X_r^n, Y_r^n, Z_r^n, \nu_r^n) \, dr + \int_t^T Z_r^n \, dW_r \,. \end{cases}$$

See [Reisinger and Zhang, 2020] for related work.

We have

$$u^n(t,x) := Y_t^{n,(t,x)}$$
 and $Z_t^{n,(t,X_t)} = \nabla_x u^n(t,X_t) \Gamma_t(X_t^n, \nu^n(X_t^n))$

We have

$$u^n(t,x) := Y_t^{n,(t,x)}$$
 and $Z_t^{n,(t,X_t)} = \nabla_x u^n(t,X_t) \Gamma_t(X_t^n, \nu^n(X_t^n))$

For suitable test function one can show that

$$\left| \int \nabla_{x} \nu_{t}^{n+1}(x,a) da \right| \leq \frac{4}{\sigma^{2}} \sup_{a} \left\| \left(\nabla_{x} \frac{\mathbf{H}_{t}^{0}}{\delta m} \right) (x, \nu^{n}(x), a) \right\|,$$

$$\left| \int f(a) \nabla_x \nu_t^{n+1}(x,a) da \right| \leq \frac{4}{\sigma^2} \sup_a \| \left(\nabla_x \frac{\mathbf{H}_t^0}{\delta m} \right) (x, \nu^n(\cdot, x), a) \| \int f(a) \nu^{n+1}(a, x) da,$$

We have

$$u^n(t,x) := Y_t^{n,(t,x)}$$
 and $Z_t^{n,(t,X_t)} = \nabla_x u^n(t,X_t) \Gamma_t(X_t^n, \nu^n(X_t^n))$

For suitable test function one can show that

$$\left| \int \nabla_{x} \nu_{t}^{n+1}(x,a) da \right| \leq \frac{4}{\sigma^{2}} \sup_{a} \left\| \left(\nabla_{x} \frac{\mathbf{H}_{t}^{0}}{\delta m} \right) (x, \nu^{n}(x), a) \right\|,$$

$$\left|\int f(a)\nabla_x \nu_t^{n+1}(x,a)da\right| \leq \frac{4}{\sigma^2} \sup_{a} \|\left(\nabla_x \frac{\mathbf{H}_t^0}{\delta m}\right)(x,\nu^n(\cdot,x),a)\|\int f(a)\nu^{n+1}(a,x)da,$$

For large σ conclude by Arzelá-Ascoli theorem.

► Generative models such as GANs or VAEs demonstrated a great success in seemingly high dimensional setups.

- Generative models such as GANs or VAEs demonstrated a great success in seemingly high dimensional setups.
- Input: Source distribution μ and target distribution ν i.e input-output data

- Generative models such as GANs or VAEs demonstrated a great success in seemingly high dimensional setups.
- Input: Source distribution μ and target distribution ν i.e input-output data
- A generative model is a transport map T from μ to ν i.e T is a map that "pushes μ onto ν ". We write $T_{\#}\mu = \nu$.

- Generative models such as GANs or VAEs demonstrated a great success in seemingly high dimensional setups.
- Input: Source distribution μ and target distribution ν i.e input-output data
- A generative model is a transport map T from μ to ν i.e T is a map that "pushes μ onto ν ". We write $T_{\#}\mu = \nu$.
- Parametrise transport map $T(\theta)$, $\theta \in \mathbb{R}^p$, e.g some network architecture or Heston model

- Generative models such as GANs or VAEs demonstrated a great success in seemingly high dimensional setups.
- Input: Source distribution μ and target distribution ν i.e input-output data
- A generative model is a transport map T from μ to ν i.e T is a map that "pushes μ onto ν ". We write $T_{\#}\mu = \nu$.
- Parametrise transport map $T(\theta)$, $\theta \in \mathbb{R}^p$, e.g some network architecture or Heston model
- Seek θ^* s.t $T(\theta^*)_{\#}\mu \approx \nu$.

- Generative models such as GANs or VAEs demonstrated a great success in seemingly high dimensional setups.
- Input: Source distribution μ and target distribution ν i.e input-output data
- A generative model is a transport map T from μ to ν i.e T is a map that "pushes μ onto ν ". We write $T_{\#}\mu = \nu$.
- Parametrise transport map $T(\theta)$, $\theta \in \mathbb{R}^p$, e.g some network architecture or Heston model
- Seek θ^* s.t $T(\theta^*)_{\#}\mu \approx \nu$.
- ▶ Need to make the choice of the metric

$$D(T(\theta)_{\#}\mu,\nu) := \sup_{f \in \mathcal{K}} \| \int f(x)(T(\theta)_{\#}\mu)(dx) - \int f(x)\nu(dx) \|$$

 $ightharpoonup \mathcal{K}$ could be set of options we want to calibrate to, could be neural network

- Generative models such as GANs or VAEs demonstrated a great success in seemingly high dimensional setups.
- Input: Source distribution μ and target distribution ν i.e input-output data
- A generative model is a transport map T from μ to ν i.e T is a map that "pushes μ onto ν ". We write $T_{\#}\mu = \nu$.
- Parametrise transport map $T(\theta)$, $\theta \in \mathbb{R}^p$, e.g some network architecture or Heston model
- ightharpoonup Seek $heta^\star$ s.t $T(heta^\star)_\# \mu pprox
 u$.
- Need to make the choice of the metric

$$D(T(\theta)_{\#}\mu,\nu) := \sup_{f \in \mathcal{K}} \| \int f(x)(T(\theta)_{\#}\mu)(dx) - \int f(x)\nu(dx) \|$$

- \blacktriangleright $\mathcal K$ could be set of options we want to calibrate to, could be neural network
- ► The modelling choices are
 - 1. metric D
 - 2. parametrisation of T
 - 3. algorithm used for training!!!

Fix $m^{\star} \in \mathcal{P}([0, T] \times \mathbb{R}^d)$ to be a target distribution.

Fix $m^* \in \mathcal{P}([0, T] \times \mathbb{R}^d)$ to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case $m^0 := \mathcal{L}(\xi) \otimes \mathcal{L}(W)$, into m^* .

Fix $m^* \in \mathcal{P}([0, T] \times \mathbb{R}^d)$ to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case $m^0 := \mathcal{L}(\xi) \otimes \mathcal{L}(W)$, into m^* .

There is a measurable map $G^{\mu}: \mathbb{R}^d \times C[0,T]^d \to C[0,T]^d$ such that $X(\mu) = G^{\mu}(\xi,(W_s)_{s \in [0,T]})$, and $X_t(\mu) := G^{\mu}_t(\xi,(W_{s \wedge t})_{s \in [0,T]})$

Fix $m^* \in \mathcal{P}([0, T] \times \mathbb{R}^d)$ to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case $m^0 := \mathcal{L}(\xi) \otimes \mathcal{L}(W)$, into m^* .

There is a measurable map $G^{\mu}: \mathbb{R}^d \times C[0,T]^d \to C[0,T]^d$ such that $X(\mu) = G^{\mu}(\xi,(W_s)_{s\in[0,T]})$, and $X_t(\mu) := G^{\mu}_t(\xi,(W_{s\wedge t})_{s\in[0,T]})$

one can view solution map as a generative model that maps $\mathcal{L}(\xi)\otimes\mathcal{L}(W)$ into $(G_t^\mu)_\# m^0$. Note that by construction G^μ is a causal transport map

Fix $m^{\star} \in \mathcal{P}([0,T] \times \mathbb{R}^d)$ to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case $m^0 := \mathcal{L}(\xi) \otimes \mathcal{L}(W)$, into m^* .

There is a measurable map $G^{\mu}: \mathbb{R}^d \times C[0,T]^d \to C[0,T]^d$ such that $X(\mu) = G^{\mu}(\xi,(W_s)_{s\in[0,T]})$, and $X_t(\mu) := G^{\mu}_t(\xi,(W_{s\wedge t})_{s\in[0,T]})$

one can view solution map as a generative model that maps $\mathcal{L}(\xi)\otimes\mathcal{L}(W)$ into $(G_t^\mu)_\# m^0$. Note that by construction G^μ is a causal transport map

One then seeks μ^{\star} such that $G_{\#}^{\mu^{\star}} m^0$ is a good approximation of m^{\star} optimisation problem e.g

$$J^{\sigma}(\nu,\xi) := \mathbb{E}^{W}\left[\int_{0}^{T} \left[\log\left(\frac{m_{t}(X_{t}(\nu))}{m_{t}^{*}(X_{t}(\nu))}\right) + \frac{\sigma^{2}}{2} \mathsf{Ent}(\nu_{t}) \right] dt \middle| X_{0}(\nu) = \xi \right].$$

Fix $m^{\star} \in \mathcal{P}([0,T] \times \mathbb{R}^d)$ to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case $m^0 := \mathcal{L}(\xi) \otimes \mathcal{L}(W)$, into m^* .

There is a measurable map $G^{\mu}: \mathbb{R}^d \times C[0,T]^d \to C[0,T]^d$ such that $X(\mu) = G^{\mu}(\xi,(W_s)_{s\in[0,T]})$, and $X_t(\mu) := G^{\mu}_t(\xi,(W_{s\wedge t})_{s\in[0,T]})$

one can view solution map as a generative model that maps $\mathcal{L}(\xi)\otimes\mathcal{L}(W)$ into $(G_t^\mu)_\# m^0$. Note that by construction G^μ is a causal transport map

One then seeks μ^{\star} such that $G_{\#}^{\mu^{\star}} m^0$ is a good approximation of m^{\star} optimisation problem e.g

$$J^{\sigma}(
u,\xi) := \mathbb{E}^W \left[\int_0^T \left[\log \left(rac{m_t(X_t(
u))}{m_t^\star(X_t(
u))}
ight) + rac{\sigma^2}{2} \mathsf{Ent}(
u_t)
ight] dt \Big| X_0(
u) = \xi
ight] \,.$$

The above optimization problem does not fit within the framework of what I presented about neural SDE.

► See [Acciaio et al., 2019] for related work

Robust pricing and hedging via neural SDEs

Until recently, models in finance and economics were mostly conceived in a three step fashion:

gathering statistical properties of the underlying time-series or the so called stylized facts

Until recently, models in finance and economics were mostly conceived in a three step fashion:

- gathering statistical properties of the underlying time-series or the so called stylized facts
- handcrafting a parsimonious model, which would best capture the desired market characteristics without adding any needless complexity and

Until recently, models in finance and economics were mostly conceived in a three step fashion:

- gathering statistical properties of the underlying time-series or the so called stylized facts
- handcrafting a parsimonious model, which would best capture the desired market characteristics without adding any needless complexity and
- calibration and validation of the handcrafted model.

Until recently, models in finance and economics were mostly conceived in a three step fashion:

- gathering statistical properties of the underlying time-series or the so called stylized facts
- handcrafting a parsimonious model, which would best capture the desired market characteristics without adding any needless complexity and
- calibration and validation of the handcrafted model.

... model complexity was undesirable

Classical Risk Models:

Pros:

- Interpretable parameters
- Relatively easy to calibrate with relatively small amount of data
- ► Several decades of underpinning research

Classical Risk Models:

Pros:

- ► Interpretable parameters
- Relatively easy to calibrate with relatively small amount of data
- Several decades of underpinning research

Cons:

- ► Lack of systematic framework for model selection
- Knighting uncertainty (Unknown unknowns)
- limited expressivity

Model Calibration

Classical Calibration:

Pick a parametric model $(S_t(\theta))_{t\in[0,T]}$ (e.g an Itô process) with parameters $\theta\in\mathbb{R}^p$

Model Calibration

Classical Calibration:

- Pick a parametric model $(S_t(\theta))_{t\in[0,T]}$ (e.g an Itô process) with parameters $\theta\in\mathbb{R}^p$
- Parametric model induces martingale measure $\mathbb{Q}(\theta)$

Model Calibration

Classical Calibration:

- Pick a parametric model $(S_t(\theta))_{t \in [0,T]}$ (e.g an Itô process) with parameters $\theta \in \mathbb{R}^p$
- Parametric model induces martingale measure $\mathbb{Q}(\theta)$
- Input Data: prices of traded derivatives $\mathfrak{p}(\Phi_i)_{i=0}^M$ with corresponding payoffs $(\Phi_i)_{i=0}^M$

Model Calibration

Classical Calibration:

- Pick a parametric model $(S_t(\theta))_{t \in [0,T]}$ (e.g an Itô process) with parameters $\theta \in \mathbb{R}^p$
- Parametric model induces martingale measure $\mathbb{Q}(\theta)$
- Input Data: prices of traded derivatives $\mathfrak{p}(\Phi_i)_{i=0}^M$ with corresponding payoffs $(\Phi_i)_{i=0}^M$
- $lackbox{Output}: heta^* ext{ such that } \mathfrak{p}(\Phi_i) pprox \mathbb{E}_{\mathbb{Q}(\Theta^*)}[\Phi_i]$

► There are infinitely many models that are consistent with the market

- ▶ There are infinitely many models that are consistent with the market
- lacktriangleright set of all martingale measures that are calibrated to data

- ▶ There are infinitely many models that are consistent with the market
- \blacktriangleright ${\cal M}$ set of all martingale measures that are calibrated to data
- Compute conservative bounds for the price

$$\sup_{\mathbb{Q}\in\mathcal{M}} E[\Psi] \quad \text{and} \quad \inf_{\mathbb{Q}\in\mathcal{M}} E[\Psi]$$

Use duality theory to deduce (semi-static) hedging strategy

- ▶ There are infinitely many models that are consistent with the market
- \blacktriangleright $\mathcal M$ set of all martingale measures that are calibrated to data
- ► Compute conservative bounds for the price

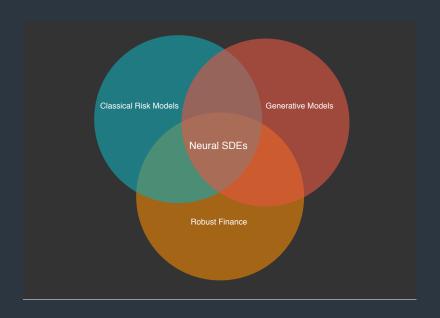
$$\sup_{\mathbb{Q}\in\mathcal{M}} E[\Psi] \quad \text{and} \quad \inf_{\mathbb{Q}\in\mathcal{M}} E[\Psi]$$

- Use duality theory to deduce (semi-static) hedging strategy
- ▶ The obtain bounds typically to wide to be of practical value

- There are infinitely many models that are consistent with the market
- \blacktriangleright $\mathcal M$ set of all martingale measures that are calibrated to data
- Compute conservative bounds for the price

$$\sup_{\mathbb{Q}\in\mathcal{M}} E[\Psi] \quad \text{and} \quad \inf_{\mathbb{Q}\in\mathcal{M}} E[\Psi]$$

- Use duality theory to deduce (semi-static) hedging strategy
- ▶ The obtain bounds typically to wide to be of practical value
- ► Challenges:
 - a) Incorporate prior information to restrict a search space ${\cal M}$
 - Design efficient algorithms for computing price bounds and corresponding hedges



lacktriangle We build an Itô process $(X_t^{ heta})_{t\in[0,T]}$, with parameters $heta\in\mathbb{R}^p$

$$dS_t^{\theta} = rS_t^{\theta} dt + \sigma^{S}(t, X_t^{\theta}, \theta) dW_t,$$

$$dV_t^{\theta} = b^{V}(t, X_t^{\theta}, \theta) dt + \sigma^{V}(t, X_t^{\theta}, \theta) dW_t,$$

$$X_t^{\theta} = (S_t^{\theta}, V_t^{\theta}),$$

where σ^S, b^V, σ^V are given by neural networks (can be path-depedend)

lacktriangle We build an Itô process $(X_t^{ heta})_{t\in[0,T]}$, with parameters $heta\in\mathbb{R}^p$

$$\begin{split} dS_t^{\theta} &= rS_t^{\theta} dt + \sigma^{S}(t, X_t^{\theta}, \theta) dW_t, \\ dV_t^{\theta} &= b^{V}(t, X_t^{\theta}, \theta) dt + \sigma^{V}(t, X_t^{\theta}, \theta) dW_t, \\ X_t^{\theta} &= (S_t^{\theta}, V_t^{\theta}), \end{split}$$

where σ^S, b^V, σ^V are given by neural networks (can be path-depedend)

ightharpoonup The model induces a martingale probability measure $\mathbb{Q}(\theta)$

lacktriangle We build an Itô process $(X_t^{ heta})_{t\in[0,T]}$, with parameters $heta\in\mathbb{R}^p$

$$\begin{split} dS_t^{\theta} &= rS_t^{\theta} dt + \sigma^{S}(t, X_t^{\theta}, \theta) dW_t, \\ dV_t^{\theta} &= b^{V}(t, X_t^{\theta}, \theta) dt + \sigma^{V}(t, X_t^{\theta}, \theta) dW_t, \\ X_t^{\theta} &= (S_t^{\theta}, V_t^{\theta}), \end{split}$$

where σ^S, b^V, σ^V are given by neural networks (can be path-depedend)

- lacktriangle The model induces a martingale probability measure $\mathbb{Q}(heta)$
- Solution map is an instance of casual transport
- See [Cuchiero et al., 2020] for neural SDEs with a prior on vol process.
- See [Arribas et al., 2020] for Sig-SDEs (neural SDE in a signature feature space)
- Neural SDEs are easy to work with e.g consistent change from $\mathbb Q$ to $\mathbb P$.

i) Calibration to market prices Find model parameters θ^* such that model prices match market prices:

$$heta^* \in rg \min_{ heta \in \Theta} \sum_{i=1}^M \ell(\mathbb{E}^{\mathbb{Q}(heta)}[\Phi_i], \mathfrak{p}(\Phi_i))$$
 .

i) Calibration to market prices Find model parameters θ^* such that model prices match market prices:

$$heta^* \in rg \min_{ heta \in \Theta} \sum_{i=1}^M \ell(\mathbb{E}^{\mathbb{Q}(heta)}[\Phi_i], \mathfrak{p}(\Phi_i))$$
 .

ii) Robust pricing Find model parameters $\theta^{l,*}$ and $\theta^{u,*}$ which provide robust arbitrage-free price bounds for an illiquid derivative, subject to available market data:

$$egin{aligned} & heta^{l,*} \in \arg\min_{ heta \in \Theta} \mathbb{E}^{\mathbb{Q}(heta)}[\Psi] \,, \quad \text{subject to} \quad \sum_{i=1}^M \ell(\mathbb{E}^{\mathbb{Q}(heta)}[\Phi_i], \mathfrak{p}(\Phi_i)) = 0 \;, \\ & heta^{u,*} \in \arg\max_{ heta \in \Theta} \mathbb{E}^{\mathbb{Q}(heta)}[\Psi], \quad \text{subject to} \quad \sum_{i=1}^M \ell(\mathbb{E}^{\mathbb{Q}(heta)}[\Phi_i], \mathfrak{p}(\Phi_i)) = 0 \;. \end{aligned}$$

where $\ell: \mathbb{R} \times \mathbb{R} \to [0, \infty)$ is a convex loss function such that $\min_{x \in \mathbb{R}, y \in \mathbb{R}} \ell(x, y) = 0$.

Let $\mathbb{Q}^N(\theta) := \frac{1}{N} \sum_{i=1}^N \delta_{X^{i,\theta}}$ be empirical approximation of $\mathbb{Q}(\theta)$.

From CLT,

$$\mathbb{P}\left(\mathbb{E}^{\mathbb{Q}(\theta)}[\Phi] \in \left[\mathbb{E}^{\mathbb{Q}^N(\theta)}[\Phi] - z_{\alpha/2}\frac{\sigma}{\sqrt{N}}, \mathbb{E}^{\mathbb{Q}^N(\theta)}[\Phi] + z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right]\right) \to 1$$

where $\sigma = \sqrt{\mathbb{V}\mathrm{ar}[\Phi]}$.

Let
$$\mathbb{Q}^N(\theta) := \frac{1}{N} \sum_{i=1}^N \delta_{X^{i,\theta}}$$
 be empirical approximation of $\mathbb{Q}(\theta)$.

From CLT,

$$\mathbb{P}\left(\mathbb{E}^{\mathbb{Q}(\theta)}[\Phi] \in \left[\mathbb{E}^{\mathbb{Q}^N(\theta)}[\Phi] - z_{\alpha/2}\frac{\sigma}{\sqrt{N}}, \mathbb{E}^{\mathbb{Q}^N(\theta)}[\Phi] + z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right]\right) \to 1$$

where $\sigma = \sqrt{\mathbb{V}ar[\Phi]}$. We seek a random variable Φ^{cv} such that:

$$\mathbb{E}^{\mathbb{Q}^N(\theta)}[\Phi^{cv}] = \mathbb{E}[\Phi] \quad \text{and} \quad \mathbb{V}\text{ar}[\Phi^{cv}] < \mathbb{V}\text{ar}[\Phi] \; .$$

Stochastic Optimisation

Let M = 1 and the loss function

$$h(heta) = \ell\Big(\mathbb{E}^{\mathbb{Q}(heta)}[\Phi^\mathsf{cv}], \mathfrak{p}(\Phi)\Big)\,.$$

Then in the gradient step update we have

$$\partial_{\theta} h(\theta) = \partial_{\mathsf{X}} \ell\left(\mathbb{E}^{\mathbb{Q}}[\Phi^{\mathsf{cv}}(X^{\theta})], \mathfrak{p}(\Phi)\right) \mathbb{E}^{\mathbb{Q}}[\partial_{\theta} \Phi(X^{\theta})],$$

Since ℓ is typically not an identity function, a mini-batch estimator of $\partial_{\theta} h(\theta)$, obtained by replacing \mathbb{Q} with \mathbb{Q}^{N} given by

$$\partial_{ heta} h^{N}(heta) := \partial_{\mathsf{x}} \ell\left(\mathbb{E}^{\mathbb{Q}^{N}}[\Phi^{\mathsf{cv}}(X^{ heta})], \mathfrak{p}(\Phi)
ight) \mathbb{E}^{\mathbb{Q}^{N}}[\partial_{ heta} \Phi(X^{ heta})]\,,$$

is a biased estimator of $\partial_{\theta}h$.

Stochastic Optimisation

Let M = 1 and the loss function

$$h(heta) = \ell\Big(\mathbb{E}^{\mathbb{Q}(heta)}[\Phi^\mathsf{cv}], \mathfrak{p}(\Phi)\Big)\,.$$

Then in the gradient step update we have

$$\partial_{\theta} h(\theta) = \partial_{\mathsf{x}} \ell\left(\mathbb{E}^{\mathbb{Q}}[\Phi^{\mathsf{cv}}(X^{\theta})], \mathfrak{p}(\Phi)\right) \mathbb{E}^{\mathbb{Q}}[\partial_{\theta} \Phi(X^{\theta})],$$

Since ℓ is typically not an identity function, a mini-batch estimator of $\partial_{\theta} h(\theta)$, obtained by replacing \mathbb{Q} with \mathbb{Q}^{N} given by

$$\partial_{ heta} h^{N}(heta) := \partial_{X} \ell\left(\mathbb{E}^{\mathbb{Q}^{N}}[\Phi^{cv}(X^{ heta})], \mathfrak{p}(\Phi)\right) \mathbb{E}^{\mathbb{Q}^{N}}[\partial_{ heta} \Phi(X^{ heta})],$$

is a biased estimator of $\partial_{\theta}h$.

Lemma 5

For
$$\ell(x, y) = |x - y|^2$$
, we have

$$\left|\mathbb{E}^{\mathbb{Q}}\left[\partial_{\theta}h^{N}(\theta)\right] - \partial_{\theta}h(\theta)\right| \leq \frac{2}{N}\left(\mathbb{V}ar^{\mathbb{Q}}[\Phi^{cv}(X^{\theta})]\right)^{1/2}\left(\mathbb{V}ar^{\mathbb{Q}}[\partial_{\theta}\Phi(X^{\theta})]\right)^{1/2}.$$

Let

$$X_t = \sigma(t, (X_{s \wedge t})_{s \in [0,T]}) dW_t,$$

Let

$$X_t = \sigma(t, (X_{s \wedge t})_{s \in [0, T]}) dW_t,$$

$$F_t := F(t, (x_{s \wedge t})_{s \in [0, T]}) = \mathbb{E}\left[\psi((X_s)_{s \in [0, T]}) | (X_{s \wedge t})_{s \in [0, T]} = (x_{s \wedge t})_{s \in [0, T]}\right]$$

Let

$$X_t = \sigma(t, (X_{s \wedge t})_{s \in [0,T]}) dW_t,$$

$$F_t := F(t, (x_{s \wedge t})_{s \in [0, T]}) = \mathbb{E}\left[\psi((X_s)_{s \in [0, T]}) | (X_{s \wedge t})_{s \in [0, T]} = (x_{s \wedge t})_{s \in [0, T]}\right]$$

Martingale representation theorem

$$F_t = \Psi - \int_t^T Z_s dW_s$$
.

With functional Itô calculus

$$F_t = \psi((X_s)_{s \in [0,T]}) - \int_t^T \nabla_\omega \psi((X_{r \wedge s})_{r \in [0,T]}) dX_s.$$

Let

$$X_t = \sigma(t, (X_{s \wedge t})_{s \in [0,T]}) dW_t,$$

$$F_t := F(t, (x_{s \wedge t})_{s \in [0, T]}) = \mathbb{E}\left[\psi((X_s)_{s \in [0, T]}) | (X_{s \wedge t})_{s \in [0, T]} = (x_{s \wedge t})_{s \in [0, T]}\right]$$

Martingale representation theorem

$$F_t = \Psi - \int_t^T Z_s dW_s$$
 .

With functional Itô calculus

$$F_t = \psi((X_s)_{s \in [0,T]}) - \int_t^T \nabla_\omega \psi((X_{r \wedge s})_{r \in [0,T]}) dX_s.$$

- ► Can learn (parametric) path dependent PDEs
- ▶ We have unbiased approximation to the PDE by hybrid Monte Carlo/deep learning, see [Vidales et al., 2018]

Neural SDEs - Algorithm

Input: $\pi = \{t_0, t_1, \dots, t_{N_{\text{Steps}}}\}$ time grid for numerical scheme.

Input: $(\Phi_i)_{i=1}^{N_{\text{prices}}}$ option payoffs.

Input: Market option prices $\mathfrak{p}(\Phi_i)$, $j = 1, \ldots, N_{\text{prices}}$.

 $\textbf{for} \ \mathsf{epoch} : 1 : \textit{N}_{\mathsf{epochs}} \ \textbf{do}$

Generate N_{trn} paths $(x_{t_n}^{\pi,\theta,i})_{n=0}^{N_{\text{steps}}} := (s_{t_n}^{\pi,\theta,i}, v_{t_n}^{\pi,\theta,i})_{n=0}^{N_{\text{steps}}}, i = 1, \dots, N_{\text{trn}}$ using

Euler scheme.

During one epoch: Freeze ξ , use Adam to update θ , where

$$heta = \widehat{\mathsf{argmin}} \sum_{j=1}^{N_{\mathsf{prices}}} \left(\mathbb{E}^{\mathsf{N}_{\mathsf{trn}}} \left[\Phi_j \left(X^{\pi, heta}
ight) - \sum_{k=0}^{\mathsf{N}_{\mathsf{steps}} - 1} \bar{\mathfrak{h}}(t_k, ilde{X}_{t_k}^{\pi,\cdot}, \xi_j) \Delta ilde{\mathsf{S}}_{t_k}^{\pi,\cdot}
ight] - \mathfrak{p}(\Phi_j)
ight)^2$$

During one epoch: Freeze θ , use Adam to update ξ , by optimising the sample variance

$$\xi = \widehat{\mathsf{argmin}} \sum_{j=1}^{\mathsf{N}_{\mathsf{prices}}} \mathbb{V}\mathsf{ar}^{\mathsf{N}_{\mathsf{trn}}} \left[\Phi_j \left(X^{\pi,\theta} \right) - \sum_{k=0}^{\mathsf{N}_{\mathsf{steps}}-1} \bar{\mathfrak{h}}(t_k, X_{t_k}^{\pi,\theta}, \xi_j) \Delta \tilde{\mathfrak{S}}_{t_k}^{\pi,\theta} \right]$$

end for return θ, ξ_j for all prices $(\Phi_i)_{i=1}^{N_{\text{prices}}}$.

Results

We calibrate (local) Stochastic Volatility model

$$\begin{split} dS_t &= rS_t dt + \sigma^S(t, S_t, V_t, \nu) S_t dB_t^S, \quad S_0 = 1, \\ dV_t &= b^V(V_t, \phi) dt + \sigma^V(V_t, \varphi) dB_t^V, \quad V_0 = v_0, \\ d\langle B^S, B^V \rangle_t &= \rho dt \end{split}$$

to European option prices

$$\mathfrak{p}(\Phi) := \mathbb{E}^{\mathbb{Q}(\theta)}[\Phi] = e^{-rT}\mathbb{E}^{\mathbb{Q}(\theta)}\left[\left(S_T - K\right)_+ \mid S_0 = 1\right]$$

for maturities of 2, 4, ..., 12 months and typically $2\overline{1}$ uniformly spaced strikes between in [0.8, 1.2].

Results

We calibrate (local) Stochastic Volatility model

$$\begin{split} dS_t &= \textit{rS}_t dt + \sigma^S(t, S_t, V_t, \nu) S_t \, dB_t^S, \quad S_0 = 1, \\ dV_t &= b^V(V_t, \phi) \, dt + \sigma^V(V_t, \varphi) \, dB_t^V, \quad V_0 = \textit{v}_0, \\ d\langle B^S, B^V \rangle_t &= \rho dt \end{split}$$

to European option prices

$$\mathfrak{p}(\Phi) := \mathbb{E}^{\mathbb{Q}(\theta)}[\Phi] = e^{-rT}\mathbb{E}^{\mathbb{Q}(\theta)}\left[\left(S_T - K\right)_+ | S_0 = 1\right]$$

for maturities of 2, 4, ..., 12 months and typically 21 uniformly spaced strikes between in [0.8, 1.2].

As an example of an illiquid derivative for which we wish to find robust bounds we take the lookback option

$$\mathfrak{p}(\Psi) := \mathbb{E}^{\mathbb{Q}(heta)}[\Psi] = e^{-rT} \mathbb{E}^{\mathbb{Q}(heta)} \left[\max_{t \in [0,T]} S_t - S_T | X_0 = 1
ight].$$

Results

We calibrate (local) Stochastic Volatility model

$$\begin{split} dS_t &= \textit{rS}_t dt + \sigma^S(t, S_t, V_t, \nu) S_t \, dB_t^S, \quad S_0 = 1, \\ dV_t &= b^V(V_t, \phi) \, dt + \sigma^V(V_t, \varphi) \, dB_t^V, \quad V_0 = \textit{v}_0, \\ d\langle B^S, B^V \rangle_t &= \rho dt \end{split}$$

to European option prices

$$\mathfrak{p}(\Phi) := \mathbb{E}^{\mathbb{Q}(\theta)}[\Phi] = e^{-rT}\mathbb{E}^{\mathbb{Q}(\theta)}\left[\left(S_T - K\right)_+ | S_0 = 1\right]$$

for maturities of $2, 4, \ldots, 12$ months and typically 21 uniformly spaced strikes between in [0.8, 1.2].

As an example of an illiquid derivative for which we wish to find robust bounds we take the lookback option

$$\mathfrak{p}(\Psi) := \mathbb{E}^{\mathbb{Q}(heta)}[\Psi] = e^{-rT} \mathbb{E}^{\mathbb{Q}(heta)} \left[\max_{t \in [0,T]} S_t - S_T | X_0 = 1
ight].$$

We generate synthetic data using Heston model.

Calibration to market prices

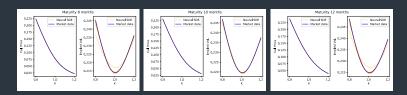


Figure: Vanilla option prices and implied volatility curves of the 10 calibrated Neural SDEs vs. the market data for different maturities.

Robust pricing

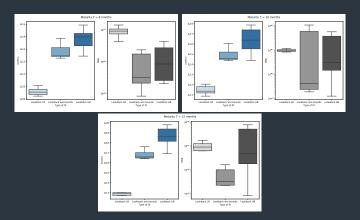


Figure: Exotic option price are in blue; Calibration error i in grey. The three box-plots in each group arise respectively from aiming for a lower bound, ad hoc and upper bound price of illiquid derivative. Each box plot comes from 10 different runs of Neural SDE calibration.

Control Variate effect on training

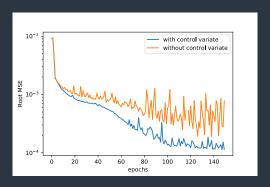


Figure: Root Mean Squared Error of calibration to Vanilla option prices with and without hedging strategy parametrisation

Joint SPX and VIX calibration with neural SDEs

Consider the Neural SDE

$$dS_t^{\theta} = S_t^{\theta} \sigma(t, V_t^{\theta}; \theta) dW_t,$$

$$dV_t^{\theta} = a(t, V_t^{\theta}; \theta) dt + b(t, V_t^{\theta}; \theta) dB_t,$$

$$\rho = \langle dW, dB \rangle_t.$$

It can be shown that the VIX dynamics at time $t \in [0, T]$ can be expressed as

$$VIX_t^2 := \frac{1}{\Delta \tau} \mathbb{E} \left[\int_t^{t+\Delta \tau} \sigma_s^2 ds \middle| \mathcal{F}_t \right] = -\frac{2}{\Delta \tau} \mathbb{E} \left[\log \left(\frac{S_{t+\Delta \tau}}{S_t} \right) \middle| \mathcal{F}_t \right], \ \Delta \tau = \frac{30}{365}$$

The VIX future with maturity maturity T is then given by

$$F_{t,T}^{ ext{VIX}} := \mathbb{E}\left[ext{VIX}_T | \mathcal{F}_t
ight]$$

VIX options are defined as

$$C_t^{\mathrm{VIX}}(\mathcal{T},\mathcal{K}) := \mathbb{E}\left[\left(\mathrm{VIX}_{\mathcal{T}} - \mathcal{K} \right)^+ \middle| \mathcal{F}_t \right], \ P_t^{\mathrm{VIX}}(\mathcal{T},\mathcal{K}) := \mathbb{E}\left[\left(\mathcal{K} - \mathrm{VIX}_{\mathcal{T}} \right)^+ \middle| \mathcal{F}_t \right].$$

joint work with: Antoine Jacquier, Marc Sabate Vidales, David Siska, Zan Zuric.

Calibration to market data

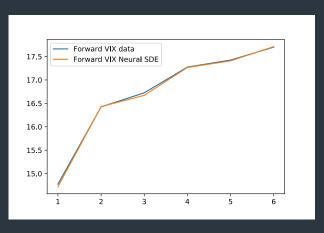


Figure: Calibration to market data (data source: OptionMetrics) containing SPX options, VIX options an VIX future for T=1,...,6 months

Calibration to market data

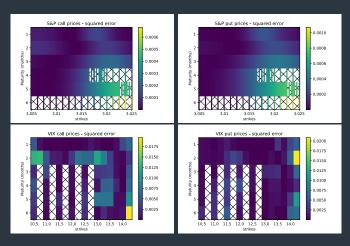


Figure: Calibrated neural SDE errors on SPX options and VIX options. Hatches correspond to combinations of Maturity/Strike for which there was not market data available

► Training neural nets is a sampling problem

- ► Training neural nets is a sampling problem
- Gradient flow view on training neural networks provides mathematical framework to study machine learning

- Training neural nets is a sampling problem
- ► Gradient flow view on training neural networks provides mathematical framework to study machine learning
- ► Probabilistic numerical analysis provides quantitative bounds that do not suffer from the curse of dimensionality

- Training neural nets is a sampling problem
- ► Gradient flow view on training neural networks provides mathematical framework to study machine learning
- Probabilistic numerical analysis provides quantitative bounds that do not suffer from the curse of dimensionality
- Machine learning perspective leads to new algorithms and mathematical tools for (stochastic) control problems/quantitative finance.

► Problem dependent choices of the metrics/Riemannian structures may lead to more efficient sampling methods

- ► Problem dependent choices of the metrics/Riemannian structures may lead to more efficient sampling methods
- ▶ Novel approaches to the 'regularisation by noise' for Transport PDEs

- Problem dependent choices of the metrics/Riemannian structures may lead to more efficient sampling methods
- ▶ Novel approaches to the 'regularisation by noise' for Transport PDEs
- ► Link between class of functions we aim to learn and the the distribution over parameters space of neural networks (need for non-asymptotic theory)

- ► Problem dependent choices of the metrics/Riemannian structures may lead to more efficient sampling methods
- ▶ Novel approaches to the 'regularisation by noise' for Transport PDEs
- Link between class of functions we aim to learn and the the distribution over parameters space of neural networks (need for non-asymptotic theory)
- Trained neural networks models are random functions hence we need estimates for the uncertainty

- ► Problem dependent choices of the metrics/Riemannian structures may lead to more efficient sampling methods
- ▶ Novel approaches to the 'regularisation by noise' for Transport PDEs
- Link between class of functions we aim to learn and the the distribution over parameters space of neural networks (need for non-asymptotic theory)
- ► Trained neural networks models are random functions hence we need estimates for the uncertainty
- …there are many many more.

References I

- [Acciaio et al., 2019] Acciaio, B., Backhoff-Veraguas, J., and Carmona, R. (2019). Extended mean field control problems: stochastic maximum principle and transport perspective. SIAM Journal on Control and Optimization, 57(6):3666–3693.
- [Arribas et al., 2020] Arribas, I. P., Salvi, C., and Szpruch, L. (2020). Sig-sdes model for quantitative finance. arXiv preprint arXiv:2006.00218.
- [Cuchiero et al., 2020] Cuchiero, C., Khosrawi, W., and Teichmann, J. (2020). A generative adversarial network approach to calibration of local stochastic volatility models. arXiv preprint arXiv:2005.02505.
- [Gobet and Labart, 2010] Gobet, E. and Labart, C. (2010). Solving bsde with adaptive control variate. SIAM Journal on Numerical Analysis, 48(1):257–277.
- [Kerimkulov et al., 2020] Kerimkulov, B., Šiška, D., and Szpruch, L. (2020). Exponential convergence and stability of howard's policy improvement algorithm for controlled diffusions. SIAM Journal on Control and Optimization, 58(3):1314–1340.
- [Reisinger and Zhang, 2020] Reisinger, C. and Zhang, Y. (2020). Regularity and stability of feedback relaxed controls. arXiv preprint arXiv:2001.03148.
- [Vidales et al., 2018] Vidales, M. S., Šiška, D., and Szpruch, L. (2018). Martingale functional control variates via deep learning. arXiv:1810.05094.