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Gradient flow perspective on control

We work with

» One hidden layer networks via gradient flow on (P»(R9), W5)
» Neural ODEs via gradient flow on (V2, W] (11,v)), where

T 1/q
Wi Gu) = ([ Wale?ae)

.
Vo = {1/ : v(dt, da) = v(da)dt, v: € P2(RP), / /|a|21/t(da)dt < oo} :
0
> Neural SDEs via gradient flow on (VY pq), where
! / l/
palp ') = (EW [ (s, 1)19]) *°
q

;
W {V L% 5 M, :IEW/ /|a|‘71/t(da, dt) < 0o and v € FYY, vt € [0, T]}
0

> (V. pq) is complete.
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Gradient Flows for Regularized
Stochastic Control Problems



Stochastic Control
For ¢ € RY and it € VW, consider the controlled process

t

Xe(u) = ¢ —l—/o &, (X (1), pr) dr + /Ot Fo(Xe(1), pr) dW,, t €0, T].
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Stochastic Control
For ¢ € RY and it € VW, consider the controlled process

t

Xe(u) =€+ /Ot & (X (1), por) dr +/() Fo(Xe(1), pr) dW,, t €0, T].

Given F and g we define the objective functional

(v, &) =EY /OT [Ft(Xt( ), ve) + — Ent(ut)} dt + g(X7(v ‘Xo f] .

Ent(m) := {fRd x) log ( (x )) dx if mis a.c. w.r.t. Lebesgue measure

otherwise

and Gibbs measure g:
g(x) = e U™ with U st. / e UM g = 1.
R

Example - Relaxed Control

Be(x, m) = / Ge(x, a)m(da), and Te(x, m)(Fe(x, m))T = / e(x, a)ye(x, 3) T m(da)
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Stochastic Control

» DPP and HJB equation

» Solve nonlinear PDE or corresponding (2)BSDE
»> 'Linearise’ with policy or value iteration and solve linear PDE
[Kerimkulov et al., 2020, Gobet and Labart, 2010]

» Maximum principle
» Solve the corresponding non-Markov FBSDE.

Motivation to study gradient flow solution for stochastic control problem

» Aiming at solving high-dimensional control problems

» Building algorithms for adaptive stochastic control (data-driven
problems)

> Bridging the gap between stochastic control and Reinforcment
learning.



Stochastic Control

Let us now introduce the Hamiltonian

2
HY (x, v, 2,m) = ®¢(x, my + tr(T] (x, m)2) + Fe(x, m) + Z-Ent(m).
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Stochastic Control

Let us now introduce the Hamiltonian

2
HY (x, v, 2,m) = ®¢(x, my + tr(T] (x, m)2) + Fe(x, m) + Z-Ent(m).

We will also use the adjoint process

dYt(/J) = _(VXH?)(Xt( )a Yt(/‘)v Zt(/‘)»/‘t) dt + Zt(ﬂ) th; te [Ov T] )
Yr(p) = (Vxg)(Xr (1))
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Theorem 1 (Necessary condition for optimality)

Fix 0 > 0. Fix g > 2. Ifv € V)V is (locally) optimal for J°(-,£), X(v) and Y (v),
Z(v) are the associated optimally controlled state and adjoint processes respectively,
then for any other p € V){V it holds that

/ H? (Xe(v), Ye(v), Zt(v), vt, a) (e — ve)(da) > 0 a.a. (w,t) € QY x (0, T)

om

For a.a. (w,t) € QY x (0, T) there exists € > 0 (small and depending on i)
such that

H? (Xe(v), Yi(v), Zt(v), vt + e(pe — ve)) > H? (Xe(v), Ye(v), Ze(v), ve) -

In other words, the optimal relaxed control v € V"{V locally minimizes the
Hamiltonian.




Let

oH?
om

(a.) = 5 (a,1) + T (U(a) + log ae(a) + 1)
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Let

5;,:;(;;, ) = %(a, ) + %2 (U(a) + log pue(a) + 1) -
Consider
i, ¢ = —((Va%im?)(xs,ta Y57t7Zs,tvgs,t)+%2(vau)(es’t)> ds+odBs, s>0,
where

vse = L(0s|FV),

Xoe =€t Jy OrXsr,vs,) dr ot o To(Xor, vs,(da)) dW,, £ € [0,T],
dYs: = —(ViH) (X, Yorr, Zo b, Vs,t) dt + Zs e dW

Yor = (V.g)(X7).



Let
o (a1 = 22, p) + T (U(a) + log pe(a) + 1)

Consider

6H° o2
dasvf = _((v 6m )(XS ty YS ty ZS tvgs t) (vaU)(es,t)> dS+UdBS ) S Z 0’
where

Vs t = [’( s, f|‘7: )
Xs,t *E‘i’fo sraVsr dr+f0 sr;Vs r(da))dWra S [Oa T]a

dYs: = (Vth )(Xs,h Ys,ts st Vs t) dt + Zs: dW;
Yor = (Vxg)(X7).
We have

2

o) =& [ |9, 2 )

ys,t(da)} dt < 0.
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Assumption 1

Let V,U be Lipschitz continuous in a and let there be k > 0 such that:

(VaU(a') — V,U(a)) - (a — a) > &la’ — af?, a,a’ €RP.

Assumption 2

Assume that there exists m1,m, € R, 7j € L9/2(QW x (0, T); R) and
5:V,;/V XV(‘J/V — [0,00) s.t for any a € RP, € VIV, t € [0, T] we have
SH? . _
(VoS5 ) (@ m)a = mulaf? = mEe(p, 0)? — e

and for all i, i’ € VIV we have EW [fOT Et(p, 1) dt] < pqlp, p')9.

Assumption 3

There exists n1,m2 € R and £ : V(',/V X V,‘;V — [0,00) s.t all t € [0, T], for all a,a’ and
for all u, p' € V‘;’V we have EW [fOT Et(p, 1) dt] < pq(p, p')9 and

0H? o0 5”? / / 2 ! 2
2((Va——)(@, 1) = (Va—)(a, ) | (& — @) > m|a’ — a|® — m&e(p, )" .
om om




Let Psul := (Ps,tpo)tE[O,T]. Moreover note that due to uniqueness we
have P, ¢ 0 = PS(PS/HO).
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Let Psul := (Ps,tpo)tE[O,T]. Moreover note that due to uniqueness we
have P, ¢ 0 = PS(PS/HO).

Theorem 2

Let Assumptions 1 and 3 hold. Moreover, assume that

A =2 (0?6 +m —12) > 0. Then there is u* € VY such that for any
s > 0 we have Pu* = p* and u* is unique. For any j° € V(‘;V we have
that

* -1 «
Ppq(Pspl®, %) < e” ™ pg(u°, p*) .




Theorem 3

Assume that for any ;° € V(‘;V the MFLD has unique solution Psu® and that it admits
unique invariant measure p* € V"{V such that for any u° € ng .
lims— 00 pq(Psy,O,,u*) =0. Let

o
t

éH
S— {1/ € VL‘;V : ——(a,v) is constant for a.a. a, t,ww} .

om
Then

We have J? (u*) < oo and Z° = {u*}. In other words, p* is the only control
which satisfies the first order condition in (1).

The unique minimizer of J° is p*.




Theorem 3
Assume that for any ;° € V(‘;V the MFLD has unique solution Psu® and that it admits
unique invariant measure p* € V"{V such that for any u° € ng .
lims— 00 pq(Psy,O,,u*) =0. Let
6HY
T = {1/ € VL‘;V : !

om

(a,v) is constant for a.a. a,t, ww}

Then

We have J? (u*) < oo and Z° = {u*}. In other words, p* is the only control
which satisfies the first order condition in (1).

The unique minimizer of J° is p*.

Recall that if v € /9 then

—R 5 —92 SH

I/tizilea (Xt’YhZth,a) ( )’ Z: /E'U (Xt,Yz,Zt,l/t,a) ( )da,




Step 1: Show that /7 = {u*}
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Step 1: Show that /7 = {u*}

Fix t € [0, T] and w" € QW.

Let bs:(a) :== (V

SH? 2
asm )@ ps) + 5

st is a solution to

8s,ufs,t.“ =V, <bs

2
o
st + 7va,ufs,t

(VaU)(a) and ps,: = L(0s,¢|FY).

), 530, peo= = LB FY).
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Step 1: Show that /7 = {u*}
Fix t € [0, T] and w" € QW.

Let by ¢(2) = (V2 30)(a, ts) + % (VaU)(3) and pis e = L(0:.e| F).

st is a solution to

2

g
8s,ufs,t.L =V, <bs,t,ufs,t + 2va,ufs,t) ) §2 07 Hs,0 = ,u'(t) = ‘C(eo,t‘ftw) :

The solution is unique and Psu® = yu5. so Ps is the solution operator.
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Since p* is an invariant measure for almost all t € [0, T] and w" € QW
we have (Psp*); = puy and so Ospuf , = 0.

Hence for almost all t € [0, T] and w" € Q"W we have that p} is the
solution to the stationary Kolmogorov—Fokker—Planck equation

0=, (v, ﬂ)(,u*w%z(vau))m%vau:). @

om

This implies that p* € Z°7.



Since p* is an invariant measure for almost all t € [0, T] and w" € QW
we have (Psp*); = puy and so Ospuf , = 0.

Hence for almost all t € [0, T] and w" € Q"W we have that p} is the
solution to the stationary Kolmogorov—Fokker—Planck equation

SHY W 0? ., 02 »
0=V, (((v ST+ S (V,U) s + 7vaut> e
This implies that p* € Z°7.

Consider now some v € Z°. Then



Since p* is an invariant measure for almost all t € [0, T] and w" € QW
we have (Psp*); = puy and so Ospuf , = 0.

Hence for almost all t € [0, T] and w" € Q"W we have that p} is the
solution to the stationary Kolmogorov—Fokker—Planck equation

0=, (v, ‘;imo)(,u*)+§(vau>)u:+§vau:). @

This implies that p* € Z°7.

Consider now some v € Z°. Then

HO
n(a) = Z7le B 0g(),

We see that almost all t € [0, T] and w"’ € Q" we have that v;
solves (2). But the solution to (2) is unique and so v = p*. This proves
item i).



*

Step 2: Show that the unique minimizer of J? is p*.
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Step 2: Show that the unique minimizer of J? is p*.

We will show by contradiction that p* is at least (locally) optimal.
Assume that p* is not the (locally) optimal control for J7.

Then for some p® € VIV it holds that J7(u°) < Jo(u*).

On the other we know that lims_, o Psuo = u*. From the lower
semi-continuity of J7 we get

J7 () = J7(u) < liminf J7(Pepi®) — J7 (1°)
**"Ji':;f/ 2 [ |f](5 ) e

This is a contradiction and so p* must be (locally) optimal.

2

(Psuo)t(da)] dt ds
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v ¢ 717
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For any other (locally) optimal control v* € V)V we have for any
Ve V2W, due to necessary condtion that

0<EW[/ /‘m?( VY (e — v?)(da) dt | .

It is easy to show that this implies that v* € Z¢



Can there be any other (locally) optimal control v* € V)V that is not
v ¢ 717

For any other (locally) optimal control v* € V)V we have for any
Ve V2W, due to necessary condtion that

0<EW[/ /‘m?( VY (e — v?)(da) dt | .

It is easy to show that this implies that v* € Z¢

But we have already shown that Z% = {x*} and so the set of local
minimizers is a singleton and thus p* is the global minimizer of J? and
item ii) is proved.



Recovering Markovian Control

Lemma 4
Assume that for any m,m’ € V‘;'V it holds that

F(x,(1 — a)m+ am’) < (1 — a)F(x, m) + aF(x,m’) forall a € [0,1] and x € RY.

Further assume that there exists ¢ and -y, are such that

by(x, m):/(i)t(x,a)m(da) Ie(x, m)(Te(x, m)) T =/.’Yt(x,a)'yt(x, a) " m(da).

Define Markov control 9¢(a, x) := EW[v¢(a)| X¢(v) = x]. Then
J7 (v, &) = J7(2,€) .

16



Define
be(x, b2 ::/qﬁt(x,a)ﬁt(da,x),

Be(x, 50)Fe(x, 02) T = /%(x, )7e(x, 3) T De(da, x) -

The mimicking theorem states that there is exists a weak solution to
t t
%(0) =€+ [ oK) o) dr+ [ F(K(0) o) d W, £ o,T],
0 0

and L(X:) = L(X¢(1)) for all t € [0, T]. This is a controlled Markov process.
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be(x, b2 ::/qﬁt(x,a)ﬁt(da,x),

Be(x, 50)Fe(x, 02) T = /%(x, )7e(x, 3) T De(da, x) -
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t t
%(0) =€+ [ oK) o) dr+ [ F(K(0) o) d W, £ o,T],
0 0
and L(X:) = L(X¢(1)) for all t € [0, T]. This is a controlled Markov process.

First note that, by convexity of entropy and due to Jensen's inequality

/Iog(ﬁt(a,x))ﬁt(a,x)da < /EW [log(v:(a))ve(a)| Xe = x] da.
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Define
be(x, b2 ::/qﬁt(x,a)ﬁt(da,x),

Be(x, 50)Fe(x, 02) T = /%(x, )7e(x, 3) T De(da, x) -

The mimicking theorem states that there is exists a weak solution to
t t
%(0) =€+ [ oK) o) dr+ [ F(K(0) o) d W, £ o,T],
0 0
and L(X:) = L(X¢(1)) for all t € [0, T]. This is a controlled Markov process.

First note that, by convexity of entropy and due to Jensen's inequality
/Iog(ﬁt(a,x))ﬁt(a,x)da < /EW [log(v:(a))ve(a)| Xe = x] da.
Since £(X:) = L(X:(v)) and F is convex, we have
. T N N o2 N T
so(0,) =% [ [ | FelRe, e, %)+ T el %) e+ (%) %0 = ¢]
0

_ W {/OT {Ft(Xt,f/t(th)) 4 %Ent(ﬁ&,Xﬂ)} dt+g(XT)‘X0(V) = 5]

<EW UOT/]E [Ft(xt,,,t) i %2Ent(ut)|Xt} dt+g(XT)(Xo = &} = J7(v,€).

Since we always have J7 (v, &) < J7(,&) the conclusion follows.
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Regularity of Control

*

vy =argmin,cy, HY (X:, Y, Ze,v),
Xe =&+ [y [O(Xevp)dr+ [ [T(X,vf(da))dW,, teo,T],
Yo =(Ve@)Xr)+ [ (VeH )Xo, Yo, Ze w7 dr + [, Z, dW,

If (Y, Z) where Markov, then we would have that v* € V) (Markov).
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Regularity of Control

*

v{ = argmin,cy, H7 (Xt, Y, Zt, V),
X, :§+f0fq> i , dr+f0fr - vi(da))dW,, tel0,T],
Yt — (ng) XT +ft X r)(Xn Yr,Zr,Ur dr+ftT Zr dWr

If (Y, Z) where Markov, then we would have that v* € V) (Markov).

We proceed by iteration. Let 10 € V;(7W2. For n > 0 define

W S & Lx0 .20 7.2) wa), Z=[e XYy, v3) 5 (2)da,
Xp o =&+ [ [ ,7,dr+f0fr(,,,dvv,,te[o 7],
Yr = (V)X + [T (VR HO(X, Y, 20, vl dr + [T Z7 dW

» See [Reisinger and Zhang, 2020] for related work.



We have

u"(t,x) = Yo and Zp%) = V" (8, Xe)Te(X{, v (X{))
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We have

u"(t,x) = Yo and Zp%) = V" (8, Xe)Te(X{, v (X{))

For suitable test function one can show that

’/ Vit (x,a)da

0

4 H n
<sup | (Vg ) (G2l

om

'/ f(a)Vii T (x, a)da

4 H(l'J n n+1
L — VYV, — .
_0.2 SL;p H ( X(; > (X7V ( 7X)73)H / f(a)y (37 X)da7
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We have

u"(t,x) = Yo and Zp%) = V" (8, Xe)Te(X{, v (X{))

For suitable test function one can show that

’/ Vit (x,a)da

0

4 H n
<sup | (Vg ) (G2l

om

'/ f(a)Vii T (x, a)da

4 H(l'J n n+1
L — VYV, — .
_0.2 SL;p H ( X(; > (X7V ( 7X)73)H / f(a)y (37 X)da7

For large o conclude by Arzela-Ascoli theorem.



Generative modelling
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Generative modelling
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Generative models such as GANs or VAEs demonstrated a great
success in seemingly high dimensional setups.

Input: Source distribution . and target distribution v i.e
input-output data

A generative model is a transport map T from y to v i.e T is a map
that “pushes p onto v". We write Ty = v,

Parametrise transport map T(6), 6 € RP, e.g some network
architecture or Heston model

Seek 0* s.t T(0*)yp ~v.
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Generative modelling

>

| 2

| 2

Generative models such as GANs or VAEs demonstrated a great
success in seemingly high dimensional setups.

Input: Source distribution . and target distribution v i.e
input-output data

A generative model is a transport map T from y to v i.e T is a map
that “pushes p onto v". We write T4 = v.

Parametrise transport map T(6), 6 € RP, e.g some network
architecture or Heston model

Seek 0* s.t T(0*)yp ~v.

Need to make the choice of the metric

D(T@)pm.v) i=sup | [ FTOn)(e) = [ Fw(@]

IC could be set of options we want to calibrate to, could be neural
network
The modelling choices are

1. metric D

2. parametrisation of T

3. algorithm used for training!!!
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Generative modelling with causal transport

Fix m* € P([0, T] x R?) to be a target distribution.
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Generative modelling with causal transport
Fix m* € P([0, T] x R?) to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case
m® = £(£) ® L(W), into m*.
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Generative modelling with causal transport

Fix m* € P([0, T] x R?) to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case
m® = £(£) ® L(W), into m*.

There is a measurable map G* : RY x C[0, T]¢ — C[0, T]? such that
X(p) = GH(&, (Ws)sepo, 17), and Xe(p) := GE (&, (Wsnt)sepo, 1)

one can view solution map as a generative model that maps £(§) ® L(W) into
(Glft)#mo. Note that by construction G* is a causal transport map

*
One then seeks p* such that G; mP is a good approximation of m* optimisation
problem e.g

1o (v,€) i= EV UOT |:Iog (%) + %zEnt(yt):| dt| Xo(v) = g} :

The above optimization problem does not fit within the framework of what | presented
about neural SDE.

» See [Acciaio et al., 2019] for related work



Robust pricing and hedging via neural

SDEs
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Until recently, models in finance and economics were mostly conceived in
a three step fashion:

» gathering statistical properties of the underlying time-series or the so
called stylized facts

» handcrafting a parsimonious model, which would best capture the
desired market characteristics without adding any needless
complexity and

» calibration and validation of the handcrafted model.

. model complexity was undesirable
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Classical Risk Models:

Pros:

» Interpretable parameters
> Relatively easy to calibrate with relatively small amount of data
> Several decades of underpinning research

Cons:

» Lack of systematic framework for model selection
» Knighting uncertainty (Unknown unknowns)
> limited expressivity
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Model Calibration

Classical Calibration:

> Pick a parametric model (5:(6)):c[o, 7] (e.g an Itd process) with
parameters 6 € RP
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Model Calibration

Classical Calibration:

>

Pick a parametric model (5:(6)):c[o, 7] (e.g an It process) with
parameters 6 € RP

Parametric model induces martingale measure Q(6)

Input Data: prices of traded derivatives p(d),-),’-\io with corresponding
payoffs (®;),

Output : 6% such that p(®;) ~ Ege-)[®i]

26
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Robust Price bounds

» There are infinitely many models that are consistent with the market

\4

M - set of all martingale measures that are calibrated to data

\{

Compute conservative bounds for the price

E[W] and inf E[¥
&’&[]a" L, B

> Use duality theory to deduce (semi-static) hedging strategy
» The obtain bounds typically to wide to be of practical value

\4

Challenges:

a) Incorporate prior information to restrict a search space M
b) Design efficient algorithms for computing price bounds and
corresponding hedges

27 / 44
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Neural SDEs

» We build an Itd process (Xf)te[o’rl, with parameters 6 € RP

dS? = rS? dt + o5 (t, X0, 6) dW ,

dVf = bY(t,X?,0)dt +cV(t, X, 0)dW,,
where 05, bV, o
path—depedend)

V' are given by neural networks (can be
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Neural SDEs

» We build an Itd process (Xf)te[o’rl, with parameters 6 € RP

v

dS? = rS? dt + o5 (t, X0, 6) dW ,

dVf = bY(t,X?,0)dt +cV(t, X, 0)dW,,
where 05, bV, o
path—depedend)

The model induces a martingale probability measure Q(6)

V' are given by neural networks (can be

Solution map is an instance of casual transport

See [Cuchiero et al., 2020] for neural SDEs with a prior on vol
process.

See [Arribas et al., 2020] for Sig-SDEs (neural SDE in a signature
feature space)

Neural SDEs are easy to work with e.g consistent change from Q to
P.
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Neural SDEs

i) Calibration to market prices Find model parameters 6* such that
model prices match market prices:

M
0" € arg o > UEXO D], p(97)) .-
i=1

i) Robust pricing Find model parameters 6"* and 6“* which provide
robust arbitrage-free price bounds for an illiquid derivative, subject to
available market data:

M
g in B2 [w bject t UEYD D], p(d;)) =
€ arg min [V], subject to ;( [®i],p(®i)) =0,

M
e Qo - QO) . ) —
0"* € arg g*neaé(IE O[w], subject to ;E(E O[], p(d:)) = 0.

where £ : R x R — [0, 00) is a convex loss function such that
Minxer,yer (X, y) = 0.



Neural SDEs

Let QV() := & Z,N:l Oxie be empirical approximation of Q(6).

From CLT,

P ( EQO[o] {E@N(")cb — Zp o QO[] 4 2, J])%l
(el (0] = 202 EC O8] + 20

VN
where 0 = /Var[®] .
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Neural SDEs

Let QV() := & Z,N:l Oxi,e be empirical approximation of Q(6).

From CLT,

P ( EQO[o] {E@N(e) O] — 20— EC"O[0] + 2, “D 1
(el (0] = 202 EC O8] + 20

where 0 = /Var[®] . We seek a random variable ¢ such that:

EY' O[] =E[®] and Var[®] < Var[¢] .
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Stochastic Optimisation
Let M =1 and the loss function

h(8) = (B2 (0], p(0))
Then in the gradient step update we have
gh(0) = O.L (EG[@(X")], p(®)) EC[3pP(X")],

Since £ is typically not an identity function, a mini-batch estimator of
Dgh(0), obtained by replacing Q with Q" given by
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is a biased estimator of Jgh.



Stochastic Optimisation
Let M =1 and the loss function

h(8) = (B2 (0], p(0))
Then in the gradient step update we have
gh(0) = O.L (EG[@(X")], p(®)) EC[3pP(X")],

Since £ is typically not an identity function, a mini-batch estimator of
Dgh(0), obtained by replacing Q with Q" given by

99" (8) = 0t (E2" [0 (X)), 5(®) ) EY" [0)0(X")]
is a biased estimator of Jgh.

Lemma 5
For {(x,y) = |x — y|?, we have

1/2

[E2 [05h(6)] — 09h(8)] < — (Var%[o=(X“)])""* (Var®[ay®(X?)])
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Let
Xi = O'(t, ()(9/\1.‘)56[0,T])dVVt7

Fe := F(t, (xsnt)seo,71) = E [£((Xs)sepo, 1) (Xsnt)sepo, 1] = (Xsat)seo, 1]
Martingale representation theorem
-
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Learning PDEs

Let
Xi = O'(t, ()(9/\1.‘)56[0,T])d‘/‘/tL7

Fe := F(t, (xsnt)seo,71) = E [£((Xs)sepo, 1) (Xsnt)sepo, 1] = (Xsat)seo, 1]
Martingale representation theorem
-
thw—/ Z. dW, .
t
With functional 1td calculus

)
Fo = ((Xe)scpo.r) — / Vuth (Xons)reio, 1) X

» Can learn (parametric) path dependent PDEs
» We have unbiased approximation to the PDE by hybrid Monte
Carlo/deep learning, see [Vidales et al., 2018]
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Neural SDEs - Algorithm

Input: 7 = {to, t1, - - - , tN, + time grid for numerical scheme.
Input: (¢;);‘i’;°es option payoffs.

Input: Market option prices p(®;), j = 1,. .., Nprices-

for epoch : 1 : Nepochs do

0,i\ N .0, 6,i\ N 5
T, I) steps: (SW i, l) steps ’:1:

Generate N, paths (x Ve Yo

Euler scheme.
During one epoch: Freeze &, use Adam to update 6, where

.y Ntrn using

Norices Neteps —1

0 —argmm Z EMem | o, <X7T’9) — Z E(tk:)?g,:’:fj)Agg’
k=0

2
—p(®)))
During one epoch: Freeze 0, use Adam to update &, by optimising the sample
VEIE (o]
P Nprices Nsteps .
¢ =argmin 3 Varm | o (xﬂ’) Z h(tk, 0 &)ASTY
13 i=1
=
end for

pnces

return 6, ¢; for all prices (®;);”
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Results
We calibrate (local) Stochastic Volatility model

dS, = rSidt + o°(t, St, Vi, v)S: dBY,  Sp =1,
dVy = bY(Vi, ¢) dt + 0V (Vi,0)dBY, Vo = w,
d(B°,BY); = pdt
to European option prices
p(®) == EU)[0] = e~ TEU? [(S7 — K), | So = 1]

for maturities of 2,4,...,12 months and typically 21 uniformly spaced
strikes between in [0.8,1.2].
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Results
We calibrate (local) Stochastic Volatility model

dSt = rstdt+ O'S(t,st7 Vt,l/)St dBts, 50 = l,
dV; = bV(Vta¢) dt + O—V(Vtﬁa) dBtvv Vo = v,
d(BS,BY), = pot

to European option prices
p(®) := EXO[0] = e~ TEX [(S7 — K), | So = 1]

for maturities of 2,4,...,12 months and typically 21 uniformly spaced
strikes between in [0.8,1.2].

As an example of an illiquid derivative for which we wish to find robust
bounds we take the lookback option

p(V) = B[] = e TEYU) | max S, — S7| Xo=1] .
te[0,T]

We generate synthetic data using Heston model.



Calibration to market prices

Figure: Vanilla option prices and implied volatility curves of the 10 calibrated
Neural SDEs vs. the market data for different maturities.



Robust pricing

Figure: Exotic option price are in blue; Calibration error i in grey. The three
box-plots in each group arise respectively from aiming for a lower bound, ad
hoc and upper bound price of illiquid derivative. Each box plot comes from 10
different runs of Neural SDE calibration.



Control Variate effect on training

—— with control variate
without control variate

w
)
=
= 1073
<]
<]
4

60 80

100 120 140
epochs

Figure: Root Mean Squared Error of calibration to Vanilla option prices with
and without hedging strategy parametrisation



Joint SPX and VIX calibration with neural SDEs
Consider the Neural SDE
dS? = Slo(t, VI 6) dW;,
dv? = a(t, V?;0) dt + b(t, V¢;0) dB;,
p=(dW,dB), .

It can be shown that the VIX dynamics at time t € [0, T] can be

expressed as
t+AT
2 S 30
2 _ t+AT _
/t o2ds 7-}] = - A-E [Iog( 5 >‘Ft}, AT =2

The VIX future with maturity maturity T is then given by
F/7¢ = E[VIX7|F]

1
IX2:= —F
VARS; AT

VIX options are defined as

C™X(T,K) :=E (VDG—K)*‘J%], PYX(T, K) ;:E[(K-VIXTﬁ’E]

joint work with: Antoine Jacquier, Marc Sabate Vidales, David Siska,
Zan Zuric.
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Calibration to market data

—— Forward VIX data
Forward VIX Neural SDE

Figure: Calibration to market data (data source: OptionMetrics) containing
SPX options, VIX options an VIX future for T = 1,...,6 months



Calibration to market data

S&P call prices - squared error S&P put prices - squared error
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Figure: Calibrated neural SDE errors on SPX options and VIX options. Hatches
correspond to combinations of Maturity/Strike for which there was not market
data available
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Key messages of this mini course

» Training neural nets is a sampling problem
» Gradient flow view on training neural networks provides
mathematical framework to study machine learning

» Probabilistic numerical analysis provides quantitative bounds that do
not suffer from the curse of dimensionality

» Machine learning perspective leads to new algorithms and
mathematical tools for (stochastic) control problems/quantitative
finance.
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Some open questions

» Problem dependent choices of the metrics/Riemannian structures
may lead to more efficient sampling methods

» Novel approaches to the 'regularisation by noise’ for Transport PDEs

» Link between class of functions we aim to learn and the the
distribution over parameters space of neural networks (need for
non-asymptotic theory)

» Trained neural networks models are random functions hence we need
estimates for the uncertainty

» ...there are many many more.

43 /44
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