
From the theory of (stochastic) control to deep
learning and back - Part 3

Lukasz Szpruch
University of Edinburgh, The Alan Turing Institute, London

1 / 44

Gradient flow perspective on control

We work with

◮ One hidden layer networks via gradient flow on (P2(Rd),W2)

◮ Neural ODEs via gradient flow on (V2,WT
2 (µ, ν)), where

WT
q (µ, ν) :=

!" T

0

Wq(µt , νt)
q dt

#1/q

.

V2 :=
$
ν : ν(dt, da) = νt(da)dt, νt ∈ P2(Rp),

" T

0

"
|a|2νt(da)dt < ∞

%
,

◮ Neural SDEs via gradient flow on (VW
q , ρq), where

ρq(µ, µ
′) =

!
EW

"
|WT

q (µ, µ′)|q
#$1/q

VW
q :=

%
ν : ΩW → Mq : EW

& T

0

&
|a|q νt(da, dt) < ∞ and νt ∈ FW

t , ∀t ∈ [0,T]
'

◮ (VW
q , ρq) is complete.

2 / 44

Gradient flow perspective on control

We work with

◮ One hidden layer networks via gradient flow on (P2(Rd),W2)

◮ Neural ODEs via gradient flow on (V2,WT
2 (µ, ν)), where

WT
q (µ, ν) :=

!" T

0

Wq(µt , νt)
q dt

#1/q

.

V2 :=
$
ν : ν(dt, da) = νt(da)dt, νt ∈ P2(Rp),

" T

0

"
|a|2νt(da)dt < ∞

%
,

◮ Neural SDEs via gradient flow on (VW
q , ρq), where

ρq(µ, µ
′) =

!
EW

"
|WT

q (µ, µ′)|q
#$1/q

VW
q :=

%
ν : ΩW → Mq : EW

& T

0

&
|a|q νt(da, dt) < ∞ and νt ∈ FW

t , ∀t ∈ [0,T]
'

◮ (VW
q , ρq) is complete.

2 / 44

Gradient flow perspective on control

We work with

◮ One hidden layer networks via gradient flow on (P2(Rd),W2)

◮ Neural ODEs via gradient flow on (V2,WT
2 (µ, ν)), where

WT
q (µ, ν) :=

!" T

0

Wq(µt , νt)
q dt

#1/q

.

V2 :=
$
ν : ν(dt, da) = νt(da)dt, νt ∈ P2(Rp),

" T

0

"
|a|2νt(da)dt < ∞

%
,

◮ Neural SDEs via gradient flow on (VW
q , ρq), where

ρq(µ, µ
′) =

!
EW

"
|WT

q (µ, µ′)|q
#$1/q

VW
q :=

%
ν : ΩW → Mq : EW

& T

0

&
|a|q νt(da, dt) < ∞ and νt ∈ FW

t , ∀t ∈ [0,T]
'

◮ (VW
q , ρq) is complete.

2 / 44

Gradient flow perspective on control

We work with

◮ One hidden layer networks via gradient flow on (P2(Rd),W2)

◮ Neural ODEs via gradient flow on (V2,WT
2 (µ, ν)), where

WT
q (µ, ν) :=

!" T

0

Wq(µt , νt)
q dt

#1/q

.

V2 :=
$
ν : ν(dt, da) = νt(da)dt, νt ∈ P2(Rp),

" T

0

"
|a|2νt(da)dt < ∞

%
,

◮ Neural SDEs via gradient flow on (VW
q , ρq), where

ρq(µ, µ
′) =

!
EW

"
|WT

q (µ, µ′)|q
#$1/q

VW
q :=

%
ν : ΩW → Mq : EW

& T

0

&
|a|q νt(da, dt) < ∞ and νt ∈ FW

t , ∀t ∈ [0,T]
'

◮ (VW
q , ρq) is complete.

2 / 44

Gradient Flows for Regularized
Stochastic Control Problems

3 / 44

Stochastic Control
For ξ ∈ Rd and µ ∈ VW

q , consider the controlled process

Xt(µ) = ξ +

! t

0

Φr (Xr (µ), µr) dr +

! t

0

Γr (Xr (µ), µr) dWr , t ∈ [0,T] .

Given F and g we define the objective functional

Jσ(ν, ξ) := EW

"! T

0

#
Ft(Xt(ν), νt) +

σ2

2
Ent(νt)

$
dt + g(XT (ν))

%%%X0(ν) = ξ

&
.

Ent(m) :=

'(
Rd m(x) log

)
m(x)
g(x)

*
dx if m is a.c. w.r.t. Lebesgue measure

∞ otherwise

and Gibbs measure g :

g(x) = e−U(x) with U s.t.

!

Rd

e−U(x) dx = 1 .

Example - Relaxed Control

Φt(x ,m) =

"
φt(x , a)m(da) , and Γt(x ,m)(Γt(x ,m))⊤ =

"
γt(x , a)γt(x , a)

⊤m(da)

4 / 44

Stochastic Control
For ξ ∈ Rd and µ ∈ VW

q , consider the controlled process

Xt(µ) = ξ +

! t

0

Φr (Xr (µ), µr) dr +

! t

0

Γr (Xr (µ), µr) dWr , t ∈ [0,T] .

Given F and g we define the objective functional

Jσ(ν, ξ) := EW

"! T

0

#
Ft(Xt(ν), νt) +

σ2

2
Ent(νt)

$
dt + g(XT (ν))

%%%X0(ν) = ξ

&
.

Ent(m) :=

'(
Rd m(x) log

)
m(x)
g(x)

*
dx if m is a.c. w.r.t. Lebesgue measure

∞ otherwise

and Gibbs measure g :

g(x) = e−U(x) with U s.t.

!

Rd

e−U(x) dx = 1 .

Example - Relaxed Control

Φt(x ,m) =

"
φt(x , a)m(da) , and Γt(x ,m)(Γt(x ,m))⊤ =

"
γt(x , a)γt(x , a)

⊤m(da)

4 / 44

Stochastic Control
For ξ ∈ Rd and µ ∈ VW

q , consider the controlled process

Xt(µ) = ξ +

! t

0

Φr (Xr (µ), µr) dr +

! t

0

Γr (Xr (µ), µr) dWr , t ∈ [0,T] .

Given F and g we define the objective functional

Jσ(ν, ξ) := EW

"! T

0

#
Ft(Xt(ν), νt) +

σ2

2
Ent(νt)

$
dt + g(XT (ν))

%%%X0(ν) = ξ

&
.

Ent(m) :=

'(
Rd m(x) log

)
m(x)
g(x)

*
dx if m is a.c. w.r.t. Lebesgue measure

∞ otherwise

and Gibbs measure g :

g(x) = e−U(x) with U s.t.

!

Rd

e−U(x) dx = 1 .

Example - Relaxed Control

Φt(x ,m) =

"
φt(x , a)m(da) , and Γt(x ,m)(Γt(x ,m))⊤ =

"
γt(x , a)γt(x , a)

⊤m(da)

4 / 44

Stochastic Control

◮ DPP and HJB equation
◮ Solve nonlinear PDE or corresponding (2)BSDE
◮ ’Linearise’ with policy or value iteration and solve linear PDE

[Kerimkulov et al., 2020, Gobet and Labart, 2010]

◮ Maximum principle
◮ Solve the corresponding non-Markov FBSDE.

Motivation to study gradient flow solution for stochastic control problem

◮ Aiming at solving high-dimensional control problems

◮ Building algorithms for adaptive stochastic control (data-driven
problems)

◮ Bridging the gap between stochastic control and Reinforcment
learning.

5 / 44

Stochastic Control

◮ DPP and HJB equation
◮ Solve nonlinear PDE or corresponding (2)BSDE
◮ ’Linearise’ with policy or value iteration and solve linear PDE

[Kerimkulov et al., 2020, Gobet and Labart, 2010]

◮ Maximum principle
◮ Solve the corresponding non-Markov FBSDE.

Motivation to study gradient flow solution for stochastic control problem

◮ Aiming at solving high-dimensional control problems

◮ Building algorithms for adaptive stochastic control (data-driven
problems)

◮ Bridging the gap between stochastic control and Reinforcment
learning.

5 / 44

Stochastic Control

◮ DPP and HJB equation
◮ Solve nonlinear PDE or corresponding (2)BSDE
◮ ’Linearise’ with policy or value iteration and solve linear PDE

[Kerimkulov et al., 2020, Gobet and Labart, 2010]

◮ Maximum principle
◮ Solve the corresponding non-Markov FBSDE.

Motivation to study gradient flow solution for stochastic control problem

◮ Aiming at solving high-dimensional control problems

◮ Building algorithms for adaptive stochastic control (data-driven
problems)

◮ Bridging the gap between stochastic control and Reinforcment
learning.

5 / 44

Stochastic Control

◮ DPP and HJB equation
◮ Solve nonlinear PDE or corresponding (2)BSDE
◮ ’Linearise’ with policy or value iteration and solve linear PDE

[Kerimkulov et al., 2020, Gobet and Labart, 2010]

◮ Maximum principle
◮ Solve the corresponding non-Markov FBSDE.

Motivation to study gradient flow solution for stochastic control problem

◮ Aiming at solving high-dimensional control problems

◮ Building algorithms for adaptive stochastic control (data-driven
problems)

◮ Bridging the gap between stochastic control and Reinforcment
learning.

5 / 44

Stochastic Control

Let us now introduce the Hamiltonian

Hσ
t (x , y , z ,m) := Φt(x ,m)y + tr(Γ⊤t (x ,m)z) + Ft(x ,m) +

σ2

2
Ent(m) .

We will also use the adjoint process

dYt(µ) = −(∇xH
0
t)(Xt(µ),Yt(µ),Zt(µ), µt) dt + Zt(µ) dWt , t ∈ [0,T] ,

YT (µ) = (∇xg)(XT (µ))

6 / 44

Stochastic Control

Let us now introduce the Hamiltonian

Hσ
t (x , y , z ,m) := Φt(x ,m)y + tr(Γ⊤t (x ,m)z) + Ft(x ,m) +

σ2

2
Ent(m) .

We will also use the adjoint process

dYt(µ) = −(∇xH
0
t)(Xt(µ),Yt(µ),Zt(µ), µt) dt + Zt(µ) dWt , t ∈ [0,T] ,

YT (µ) = (∇xg)(XT (µ))

6 / 44

Theorem 1 (Necessary condition for optimality)

Fix σ > 0. Fix q > 2. If ν ∈ VW
q is (locally) optimal for Jσ(·, ξ), X (ν) and Y (ν),

Z(ν) are the associated optimally controlled state and adjoint processes respectively,
then for any other µ ∈ VW

q it holds that

i)
&

δHσ

δm
(Xt(ν),Yt(ν),Zt(ν), νt , a) (µt − νt)(da) ≥ 0 a.a. (ω, t) ∈ ΩW × (0,T)

ii) For a.a. (ω, t) ∈ ΩW × (0,T) there exists ε > 0 (small and depending on µt)
such that

Hσ(Xt(ν),Yt(ν),Zt(ν), νt + ε(µt − νt)) ≥ Hσ(Xt(ν),Yt(ν),Zt(ν), νt) .

In other words, the optimal relaxed control ν ∈ VW
q locally minimizes the

Hamiltonian.

7 / 44

Let
δHσ

t

δm
(a, µ) =

δH0
t

δm
(a, µ) +

σ2

2
(U(a) + logµt(a) + 1) .

Consider

dθs,t = −
)
(∇a

δH0
t

δm
)(Xs,t ,Ys,t ,Zs,t , θs,t)+

σ2

2
(∇aU)(θs,t)

*
ds+σdBs , s ≥ 0 , θt,0 = θ0t ,

where

+
,,,-

,,,.

νs,t = L(θs,t |FW
t) ,

Xs,t = ξ +
(t

0
Φr (Xs,r , νs,r) dr +

(t

0
Γr (Xs,r , νs,r (da)) dWr , t ∈ [0,T] ,

dYs,t = −(∇xH
0
t)(Xs,t ,Ys,t ,Zs,t , νs,t) dt + Zs,t dWt ,

Ys,T = (∇xg)(XT) .

We have

d

ds
J(νs,·) = −EW

! T

0

! %%%%(∇a
δHσ

t

δm
)(·, νs,t)

%%%%
2

νs,t(da)

$
dt ≤ 0 .

8 / 44

Let
δHσ

t

δm
(a, µ) =

δH0
t

δm
(a, µ) +

σ2

2
(U(a) + logµt(a) + 1) .

Consider

dθs,t = −
)
(∇a

δH0
t

δm
)(Xs,t ,Ys,t ,Zs,t , θs,t)+

σ2

2
(∇aU)(θs,t)

*
ds+σdBs , s ≥ 0 , θt,0 = θ0t ,

where

+
,,,-

,,,.

νs,t = L(θs,t |FW
t) ,

Xs,t = ξ +
(t

0
Φr (Xs,r , νs,r) dr +

(t

0
Γr (Xs,r , νs,r (da)) dWr , t ∈ [0,T] ,

dYs,t = −(∇xH
0
t)(Xs,t ,Ys,t ,Zs,t , νs,t) dt + Zs,t dWt ,

Ys,T = (∇xg)(XT) .

We have

d

ds
J(νs,·) = −EW

! T

0

! %%%%(∇a
δHσ

t

δm
)(·, νs,t)

%%%%
2

νs,t(da)

$
dt ≤ 0 .

8 / 44

Let
δHσ

t

δm
(a, µ) =

δH0
t

δm
(a, µ) +

σ2

2
(U(a) + logµt(a) + 1) .

Consider

dθs,t = −
)
(∇a

δH0
t

δm
)(Xs,t ,Ys,t ,Zs,t , θs,t)+

σ2

2
(∇aU)(θs,t)

*
ds+σdBs , s ≥ 0 , θt,0 = θ0t ,

where

+
,,,-

,,,.

νs,t = L(θs,t |FW
t) ,

Xs,t = ξ +
(t

0
Φr (Xs,r , νs,r) dr +

(t

0
Γr (Xs,r , νs,r (da)) dWr , t ∈ [0,T] ,

dYs,t = −(∇xH
0
t)(Xs,t ,Ys,t ,Zs,t , νs,t) dt + Zs,t dWt ,

Ys,T = (∇xg)(XT) .

We have

d

ds
J(νs,·) = −EW

! T

0

! %%%%(∇a
δHσ

t

δm
)(·, νs,t)

%%%%
2

νs,t(da)

$
dt ≤ 0 .

8 / 44

Assumption 1

Let ∇aU be Lipschitz continuous in a and let there be κ > 0 such that:
(
∇aU(a′)−∇aU(a)

)
·
(
a′ − a

)
≥ κ|a′ − a|2, a, a′ ∈ Rp .

Assumption 2

Assume that there exists η1, η2 ∈ R, η̄ ∈ Lq/2(ΩW × (0,T);R) and
E : VW

q × VW
q → [0,∞) s.t for any a ∈ Rp , µ ∈ VW

2 , t ∈ [0,T] we have

!
∇a

δH0
t

δm

$
(a, µ)a ≥ η1|a|2 − η2Et(µ, δ0)2 − η̄t

and for all µ, µ′ ∈ VW
q we have EW

* + T
0 Et(µ, µ′)q dt

,
≤ ρq(µ, µ′)q .

Assumption 3

There exists η1, η2 ∈ R and E : VW
q × VW

q → [0,∞) s.t all t ∈ [0,T], for all a, a′ and

for all µ, µ′ ∈ VW
q we have EW

* + T
0 Et(µ, µ′)q dt

,
≤ ρq(µ, µ′)q and

2

-
(∇a

δH0
t

δm
)(a′, µ′)− (∇a

δH0
t

δm
)(a, µ)

.
(a′ − a) ≥ η1|a′ − a|2 − η2Et(µ′, µ)2 .

9 / 44

Assumption 1

Let ∇aU be Lipschitz continuous in a and let there be κ > 0 such that:
(
∇aU(a′)−∇aU(a)

)
·
(
a′ − a

)
≥ κ|a′ − a|2, a, a′ ∈ Rp .

Assumption 2

Assume that there exists η1, η2 ∈ R, η̄ ∈ Lq/2(ΩW × (0,T);R) and
E : VW

q × VW
q → [0,∞) s.t for any a ∈ Rp , µ ∈ VW

2 , t ∈ [0,T] we have

!
∇a

δH0
t

δm

$
(a, µ)a ≥ η1|a|2 − η2Et(µ, δ0)2 − η̄t

and for all µ, µ′ ∈ VW
q we have EW

* + T
0 Et(µ, µ′)q dt

,
≤ ρq(µ, µ′)q .

Assumption 3

There exists η1, η2 ∈ R and E : VW
q × VW

q → [0,∞) s.t all t ∈ [0,T], for all a, a′ and

for all µ, µ′ ∈ VW
q we have EW

* + T
0 Et(µ, µ′)q dt

,
≤ ρq(µ, µ′)q and

2

-
(∇a

δH0
t

δm
)(a′, µ′)− (∇a

δH0
t

δm
)(a, µ)

.
(a′ − a) ≥ η1|a′ − a|2 − η2Et(µ′, µ)2 .

9 / 44

Assumption 1

Let ∇aU be Lipschitz continuous in a and let there be κ > 0 such that:
(
∇aU(a′)−∇aU(a)

)
·
(
a′ − a

)
≥ κ|a′ − a|2, a, a′ ∈ Rp .

Assumption 2

Assume that there exists η1, η2 ∈ R, η̄ ∈ Lq/2(ΩW × (0,T);R) and
E : VW

q × VW
q → [0,∞) s.t for any a ∈ Rp , µ ∈ VW

2 , t ∈ [0,T] we have

!
∇a

δH0
t

δm

$
(a, µ)a ≥ η1|a|2 − η2Et(µ, δ0)2 − η̄t

and for all µ, µ′ ∈ VW
q we have EW

* + T
0 Et(µ, µ′)q dt

,
≤ ρq(µ, µ′)q .

Assumption 3

There exists η1, η2 ∈ R and E : VW
q × VW

q → [0,∞) s.t all t ∈ [0,T], for all a, a′ and

for all µ, µ′ ∈ VW
q we have EW

* + T
0 Et(µ, µ′)q dt

,
≤ ρq(µ, µ′)q and

2

-
(∇a

δH0
t

δm
)(a′, µ′)− (∇a

δH0
t

δm
)(a, µ)

.
(a′ − a) ≥ η1|a′ − a|2 − η2Et(µ′, µ)2 .

9 / 44

Let Psµ
0 := (Ps,tµ

0)t∈[0,T]. Moreover note that due to uniqueness we

have Ps+s′µ
0 = Ps

/
Ps′µ

0
0
.

Theorem 2

Let Assumptions 1 and 3 hold. Moreover, assume that
λ = q

2

/
σ2κ+ η1 − η2

0
> 0. Then there is µ∗ ∈ VW

q such that for any

s ≥ 0 we have Psµ
∗ = µ∗ and µ∗ is unique. For any µ0 ∈ VW

q we have
that

ρq(Psµ
0, µ∗) ≤ e−

1
qλsρq(µ

0, µ∗) .

10 / 44

Let Psµ
0 := (Ps,tµ

0)t∈[0,T]. Moreover note that due to uniqueness we

have Ps+s′µ
0 = Ps

/
Ps′µ

0
0
.

Theorem 2

Let Assumptions 1 and 3 hold. Moreover, assume that
λ = q

2

/
σ2κ+ η1 − η2

0
> 0. Then there is µ∗ ∈ VW

q such that for any

s ≥ 0 we have Psµ
∗ = µ∗ and µ∗ is unique. For any µ0 ∈ VW

q we have
that

ρq(Psµ
0, µ∗) ≤ e−

1
qλsρq(µ

0, µ∗) .

10 / 44

Theorem 3
Assume that for any µ0 ∈ VW

q the MFLD has unique solution Psµ0 and that it admits

unique invariant measure µ∗ ∈ VW
q such that for any µ0 ∈ VW

q ,

lims→∞ ρq(Psµ0, µ∗) = 0. Let

Iσ :=

/
ν ∈ VW

q :
δHσ

t

δm
(a, ν) is constant for a.a. a, t,ωW

0
. (1)

Then

i) We have Jσ(µ∗) < ∞ and Iσ = {µ∗}. In other words, µ∗ is the only control
which satisfies the first order condition in (1).

ii) The unique minimizer of Jσ is µ∗.

Recall that if ν ∈ Iσ then

νt = Z−1e
−2

σ2
δH0

t
δm (Xt ,Yt ,Zt ,νt ,a)γ(a) , Z =

!
e

−2

σ2
δH0

t
δm (Xt ,Yt ,Zt ,νt ,a)γ(a)da ,

11 / 44

Theorem 3
Assume that for any µ0 ∈ VW

q the MFLD has unique solution Psµ0 and that it admits

unique invariant measure µ∗ ∈ VW
q such that for any µ0 ∈ VW

q ,

lims→∞ ρq(Psµ0, µ∗) = 0. Let

Iσ :=

/
ν ∈ VW

q :
δHσ

t

δm
(a, ν) is constant for a.a. a, t,ωW

0
. (1)

Then

i) We have Jσ(µ∗) < ∞ and Iσ = {µ∗}. In other words, µ∗ is the only control
which satisfies the first order condition in (1).

ii) The unique minimizer of Jσ is µ∗.

Recall that if ν ∈ Iσ then

νt = Z−1e
−2

σ2
δH0

t
δm (Xt ,Yt ,Zt ,νt ,a)γ(a) , Z =

!
e

−2

σ2
δH0

t
δm (Xt ,Yt ,Zt ,νt ,a)γ(a)da ,

11 / 44

Step 1: Show that Iσ = {µ∗}

Fix t ∈ [0,T] and ωW ∈ ΩW .

Let bs,t(a) := (∇a
δH0

t

δm)(a, µs) +
σ2

2 (∇aU)(a) and µs,t = L(θs,t |FW
t).

µs,t is a solution to

∂sµs,t = ∇a ·
1
bs,tµs,t +

σ2

2
∇aµs,t

2
, s ≥ 0 , µs,0 = µ0

t := L(θ0,t |FW
t) .

The solution is unique and Psµ
0 = µs,· so Ps is the solution operator.

12 / 44

Step 1: Show that Iσ = {µ∗}

Fix t ∈ [0,T] and ωW ∈ ΩW .

Let bs,t(a) := (∇a
δH0

t

δm)(a, µs) +
σ2

2 (∇aU)(a) and µs,t = L(θs,t |FW
t).

µs,t is a solution to

∂sµs,t = ∇a ·
1
bs,tµs,t +

σ2

2
∇aµs,t

2
, s ≥ 0 , µs,0 = µ0

t := L(θ0,t |FW
t) .

The solution is unique and Psµ
0 = µs,· so Ps is the solution operator.

12 / 44

Step 1: Show that Iσ = {µ∗}

Fix t ∈ [0,T] and ωW ∈ ΩW .

Let bs,t(a) := (∇a
δH0

t

δm)(a, µs) +
σ2

2 (∇aU)(a) and µs,t = L(θs,t |FW
t).

µs,t is a solution to

∂sµs,t = ∇a ·
1
bs,tµs,t +

σ2

2
∇aµs,t

2
, s ≥ 0 , µs,0 = µ0

t := L(θ0,t |FW
t) .

The solution is unique and Psµ
0 = µs,· so Ps is the solution operator.

12 / 44

Step 1: Show that Iσ = {µ∗}

Fix t ∈ [0,T] and ωW ∈ ΩW .

Let bs,t(a) := (∇a
δH0

t

δm)(a, µs) +
σ2

2 (∇aU)(a) and µs,t = L(θs,t |FW
t).

µs,t is a solution to

∂sµs,t = ∇a ·
1
bs,tµs,t +

σ2

2
∇aµs,t

2
, s ≥ 0 , µs,0 = µ0

t := L(θ0,t |FW
t) .

The solution is unique and Psµ
0 = µs,· so Ps is the solution operator.

12 / 44

Since µ∗ is an invariant measure for almost all t ∈ [0,T] and ωW ∈ ΩW

we have (Psµ
∗)t = µ∗

t and so ∂sµ
∗
s,t = 0.

Hence for almost all t ∈ [0,T] and ωW ∈ ΩW we have that µ∗
t is the

solution to the stationary Kolmogorov–Fokker–Planck equation

0 = ∇a ·
1)

(∇a
δH0

t

δm
)(·, µ∗) +

σ2

2
(∇aU)

*
µ∗
t +

σ2

2
∇aµ

∗
t

2
. (2)

This implies that µ∗ ∈ Iσ.

Consider now some ν ∈ Iσ. Then

νt(a) = Z−1e−
2
σ2

δH0
t

δm (a,ν)g(a) ,

We see that almost all t ∈ [0,T] and ωW ∈ ΩW we have that νt
solves (2). But the solution to (2) is unique and so ν = µ∗. This proves
item i).

13 / 44

Since µ∗ is an invariant measure for almost all t ∈ [0,T] and ωW ∈ ΩW

we have (Psµ
∗)t = µ∗

t and so ∂sµ
∗
s,t = 0.

Hence for almost all t ∈ [0,T] and ωW ∈ ΩW we have that µ∗
t is the

solution to the stationary Kolmogorov–Fokker–Planck equation

0 = ∇a ·
1)

(∇a
δH0

t

δm
)(·, µ∗) +

σ2

2
(∇aU)

*
µ∗
t +

σ2

2
∇aµ

∗
t

2
. (2)

This implies that µ∗ ∈ Iσ.

Consider now some ν ∈ Iσ. Then

νt(a) = Z−1e−
2
σ2

δH0
t

δm (a,ν)g(a) ,

We see that almost all t ∈ [0,T] and ωW ∈ ΩW we have that νt
solves (2). But the solution to (2) is unique and so ν = µ∗. This proves
item i).

13 / 44

Since µ∗ is an invariant measure for almost all t ∈ [0,T] and ωW ∈ ΩW

we have (Psµ
∗)t = µ∗

t and so ∂sµ
∗
s,t = 0.

Hence for almost all t ∈ [0,T] and ωW ∈ ΩW we have that µ∗
t is the

solution to the stationary Kolmogorov–Fokker–Planck equation

0 = ∇a ·
1)

(∇a
δH0

t

δm
)(·, µ∗) +

σ2

2
(∇aU)

*
µ∗
t +

σ2

2
∇aµ

∗
t

2
. (2)

This implies that µ∗ ∈ Iσ.

Consider now some ν ∈ Iσ. Then

νt(a) = Z−1e−
2
σ2

δH0
t

δm (a,ν)g(a) ,

We see that almost all t ∈ [0,T] and ωW ∈ ΩW we have that νt
solves (2). But the solution to (2) is unique and so ν = µ∗. This proves
item i).

13 / 44

Since µ∗ is an invariant measure for almost all t ∈ [0,T] and ωW ∈ ΩW

we have (Psµ
∗)t = µ∗

t and so ∂sµ
∗
s,t = 0.

Hence for almost all t ∈ [0,T] and ωW ∈ ΩW we have that µ∗
t is the

solution to the stationary Kolmogorov–Fokker–Planck equation

0 = ∇a ·
1)

(∇a
δH0

t

δm
)(·, µ∗) +

σ2

2
(∇aU)

*
µ∗
t +

σ2

2
∇aµ

∗
t

2
. (2)

This implies that µ∗ ∈ Iσ.

Consider now some ν ∈ Iσ. Then

νt(a) = Z−1e−
2
σ2

δH0
t

δm (a,ν)g(a) ,

We see that almost all t ∈ [0,T] and ωW ∈ ΩW we have that νt
solves (2). But the solution to (2) is unique and so ν = µ∗. This proves
item i).

13 / 44

Step 2: Show that the unique minimizer of Jσ is µ∗.

We will show by contradiction that µ∗ is at least (locally) optimal.
Assume that µ∗ is not the (locally) optimal control for Jσ.

Then for some µ0 ∈ VW
2 it holds that Jσ(µ0) < Jσ(µ∗).

On the other we know that lims→∞ Psµ
0 = µ∗. From the lower

semi-continuity of Jσ we get

Jσ(µ∗)− Jσ(µ0) ≤ lim inf
s→∞

Jσ(Psµ
0)− Jσ(µ0)

= − lim inf
s→∞

! s

0

EW

! T

0

"! %%%%

1
∇a

δHσ

δm

2
(a, (Psµ

0)t)

%%%%
2

(Psµ
0)t(da)

&
dt ds

≤ 0 .

This is a contradiction and so µ∗ must be (locally) optimal.

14 / 44

Step 2: Show that the unique minimizer of Jσ is µ∗.

We will show by contradiction that µ∗ is at least (locally) optimal.
Assume that µ∗ is not the (locally) optimal control for Jσ.

Then for some µ0 ∈ VW
2 it holds that Jσ(µ0) < Jσ(µ∗).

On the other we know that lims→∞ Psµ
0 = µ∗. From the lower

semi-continuity of Jσ we get

Jσ(µ∗)− Jσ(µ0) ≤ lim inf
s→∞

Jσ(Psµ
0)− Jσ(µ0)

= − lim inf
s→∞

! s

0

EW

! T

0

"! %%%%

1
∇a

δHσ

δm

2
(a, (Psµ

0)t)

%%%%
2

(Psµ
0)t(da)

&
dt ds

≤ 0 .

This is a contradiction and so µ∗ must be (locally) optimal.

14 / 44

Step 2: Show that the unique minimizer of Jσ is µ∗.

We will show by contradiction that µ∗ is at least (locally) optimal.
Assume that µ∗ is not the (locally) optimal control for Jσ.

Then for some µ0 ∈ VW
2 it holds that Jσ(µ0) < Jσ(µ∗).

On the other we know that lims→∞ Psµ
0 = µ∗. From the lower

semi-continuity of Jσ we get

Jσ(µ∗)− Jσ(µ0) ≤ lim inf
s→∞

Jσ(Psµ
0)− Jσ(µ0)

= − lim inf
s→∞

! s

0

EW

! T

0

"! %%%%

1
∇a

δHσ

δm

2
(a, (Psµ

0)t)

%%%%
2

(Psµ
0)t(da)

&
dt ds

≤ 0 .

This is a contradiction and so µ∗ must be (locally) optimal.

14 / 44

Step 2: Show that the unique minimizer of Jσ is µ∗.

We will show by contradiction that µ∗ is at least (locally) optimal.
Assume that µ∗ is not the (locally) optimal control for Jσ.

Then for some µ0 ∈ VW
2 it holds that Jσ(µ0) < Jσ(µ∗).

On the other we know that lims→∞ Psµ
0 = µ∗. From the lower

semi-continuity of Jσ we get

Jσ(µ∗)− Jσ(µ0) ≤ lim inf
s→∞

Jσ(Psµ
0)− Jσ(µ0)

= − lim inf
s→∞

! s

0

EW

! T

0

"! %%%%

1
∇a

δHσ

δm

2
(a, (Psµ

0)t)

%%%%
2

(Psµ
0)t(da)

&
dt ds

≤ 0 .

This is a contradiction and so µ∗ must be (locally) optimal.

14 / 44

Can there be any other (locally) optimal control ν∗ ∈ VW
2 that is not

ν∗ /∈ Iσ?

For any other (locally) optimal control ν∗ ∈ VW
2 we have for any

ν ∈ VW
2 , due to necessary condtion that

0 ≤ EW

! T

0

!
δHσ

t

δm
(a, ν∗)(νt − ν∗t)(da) dt

$
.

It is easy to show that this implies that ν∗ ∈ Iσ

But we have already shown that Iσ = {µ∗} and so the set of local
minimizers is a singleton and thus µ∗ is the global minimizer of Jσ and
item ii) is proved.

15 / 44

Can there be any other (locally) optimal control ν∗ ∈ VW
2 that is not

ν∗ /∈ Iσ?

For any other (locally) optimal control ν∗ ∈ VW
2 we have for any

ν ∈ VW
2 , due to necessary condtion that

0 ≤ EW

! T

0

!
δHσ

t

δm
(a, ν∗)(νt − ν∗t)(da) dt

$
.

It is easy to show that this implies that ν∗ ∈ Iσ

But we have already shown that Iσ = {µ∗} and so the set of local
minimizers is a singleton and thus µ∗ is the global minimizer of Jσ and
item ii) is proved.

15 / 44

Can there be any other (locally) optimal control ν∗ ∈ VW
2 that is not

ν∗ /∈ Iσ?

For any other (locally) optimal control ν∗ ∈ VW
2 we have for any

ν ∈ VW
2 , due to necessary condtion that

0 ≤ EW

! T

0

!
δHσ

t

δm
(a, ν∗)(νt − ν∗t)(da) dt

$
.

It is easy to show that this implies that ν∗ ∈ Iσ

But we have already shown that Iσ = {µ∗} and so the set of local
minimizers is a singleton and thus µ∗ is the global minimizer of Jσ and
item ii) is proved.

15 / 44

Recovering Markovian Control

Lemma 4
Assume that for any m,m′ ∈ VW

q it holds that

F (x , (1− α)m + αm′) ≤ (1− α)F (x ,m) + αF (x ,m′) for all α ∈ [0, 1] and x ∈ Rd .

Further assume that there exists φ and γ, are such that

Φt(x ,m) =

&
φt(x , a)m(da) Γt(x ,m)(Γt(x ,m))⊤ =

&
γt(x , a)γt(x , a)

⊤m(da) .

Define Markov control ν̂t(a, x) := EW [νt(a)|Xt(ν) = x]. Then

Jσ(ν, ξ) = Jσ(ν̂, ξ) .

16 / 44

Define

Φ̂t(x , ν̂t) :=

&
φt(x , a)ν̂t(da, x) ,

Γ̂t(x , ν̂t)Γ̂t(x , ν̂t)
⊤ :=

&
γt(x , a)γt(x , a)

⊤ν̂t(da, x) .

The mimicking theorem states that there is exists a weak solution to

X̂t(ν̂) = ξ +

& t

0
Φ̂r (X̂r (ν̂), ν̂r) dr +

& t

0
Γ̂r (X̂r (ν̂), ν̂r) dŴr , t ∈ [0,T] ,

and L(X̂t) = L(Xt(µ)) for all t ∈ [0,T]. This is a controlled Markov process.

First note that, by convexity of entropy and due to Jensen’s inequality
&

log(ν̂t(a, x))ν̂t(a, x)da ≤
&

EW [log(νt(a))νt(a)|Xt = x] da .

Since L(X̂t) = L(Xt(ν)) and F is convex, we have

Jσ(ν̂, ξ) := EŴ

1& T

0

1
Ft(X̂t , ν̂t(·, X̂t)) +

σ2

2
Ent(νt(·, X̂t))

2
dt + g(X̂T)

333X̂0 = ξ

2

= EW

1& T

0

1
Ft(Xt , ν̂t(·,Xt)) +

σ2

2
Ent(ν̂t(·,Xt))

2
dt + g(XT)

333X0(ν) = ξ

2

≤ EW

1& T

0

&
E
1
Ft(Xt , νt) +

σ2

2
Ent(νt)|Xt

2
dt + g(XT)

333X0 = ξ

2
= Jσ(ν, ξ) .

Since we always have Jσ(ν, ξ) ≤ Jσ(ν̂, ξ) the conclusion follows.

17 / 44

Define

Φ̂t(x , ν̂t) :=

&
φt(x , a)ν̂t(da, x) ,

Γ̂t(x , ν̂t)Γ̂t(x , ν̂t)
⊤ :=

&
γt(x , a)γt(x , a)

⊤ν̂t(da, x) .

The mimicking theorem states that there is exists a weak solution to

X̂t(ν̂) = ξ +

& t

0
Φ̂r (X̂r (ν̂), ν̂r) dr +

& t

0
Γ̂r (X̂r (ν̂), ν̂r) dŴr , t ∈ [0,T] ,

and L(X̂t) = L(Xt(µ)) for all t ∈ [0,T]. This is a controlled Markov process.

First note that, by convexity of entropy and due to Jensen’s inequality
&

log(ν̂t(a, x))ν̂t(a, x)da ≤
&

EW [log(νt(a))νt(a)|Xt = x] da .

Since L(X̂t) = L(Xt(ν)) and F is convex, we have

Jσ(ν̂, ξ) := EŴ

1& T

0

1
Ft(X̂t , ν̂t(·, X̂t)) +

σ2

2
Ent(νt(·, X̂t))

2
dt + g(X̂T)

333X̂0 = ξ

2

= EW

1& T

0

1
Ft(Xt , ν̂t(·,Xt)) +

σ2

2
Ent(ν̂t(·,Xt))

2
dt + g(XT)

333X0(ν) = ξ

2

≤ EW

1& T

0

&
E
1
Ft(Xt , νt) +

σ2

2
Ent(νt)|Xt

2
dt + g(XT)

333X0 = ξ

2
= Jσ(ν, ξ) .

Since we always have Jσ(ν, ξ) ≤ Jσ(ν̂, ξ) the conclusion follows.

17 / 44

Define

Φ̂t(x , ν̂t) :=

&
φt(x , a)ν̂t(da, x) ,

Γ̂t(x , ν̂t)Γ̂t(x , ν̂t)
⊤ :=

&
γt(x , a)γt(x , a)

⊤ν̂t(da, x) .

The mimicking theorem states that there is exists a weak solution to

X̂t(ν̂) = ξ +

& t

0
Φ̂r (X̂r (ν̂), ν̂r) dr +

& t

0
Γ̂r (X̂r (ν̂), ν̂r) dŴr , t ∈ [0,T] ,

and L(X̂t) = L(Xt(µ)) for all t ∈ [0,T]. This is a controlled Markov process.

First note that, by convexity of entropy and due to Jensen’s inequality
&

log(ν̂t(a, x))ν̂t(a, x)da ≤
&

EW [log(νt(a))νt(a)|Xt = x] da .

Since L(X̂t) = L(Xt(ν)) and F is convex, we have

Jσ(ν̂, ξ) := EŴ

1& T

0

1
Ft(X̂t , ν̂t(·, X̂t)) +

σ2

2
Ent(νt(·, X̂t))

2
dt + g(X̂T)

333X̂0 = ξ

2

= EW

1& T

0

1
Ft(Xt , ν̂t(·,Xt)) +

σ2

2
Ent(ν̂t(·,Xt))

2
dt + g(XT)

333X0(ν) = ξ

2

≤ EW

1& T

0

&
E
1
Ft(Xt , νt) +

σ2

2
Ent(νt)|Xt

2
dt + g(XT)

333X0 = ξ

2
= Jσ(ν, ξ) .

Since we always have Jσ(ν, ξ) ≤ Jσ(ν̂, ξ) the conclusion follows.
17 / 44

Regularity of Control

+
,-

,.

ν∗t = argminν∈Vq
Hσ

t (Xt ,Yt ,Zt , ν),

Xt = ξ +
(t

0

(
Φr (Xr , ν

∗
r) dr +

(t

0

(
Γr (Xr , ν

∗
r (da)) dWr , t ∈ [0,T] ,

Yt = (∇xg)(XT) +
(T

t
(∇xHr)(Xr ,Yr ,Zr , ν

∗
r) dr +

(T

t
Zr dWr .

If (Y ,Z) where Markov, then we would have that ν∗ ∈ VM
q (Markov).

We proceed by iteration. Let ν0 ∈ VX ,W 2

q . For n ≥ 0 define

+
,,-

,,.

νn+1
t = Z−1e

−2

σ2
δH0

t
δm (X n

t ,Y
n
t ,Z

n
t ,ν

n
t ,a)γ(a) , Z =

(
e

−2

σ2
δH0

t
δm (X n

t ,Y
n
t ,Z

n
t ,ν

n
t ,a)γ(a)da ,

X n
t = ξ +

(t

0

(
Φr (X

n
r , ν

n
r) dr +

(t

0

(
Γr (X

n
r , ν

n
r) dWr , t ∈ [0,T] ,

Y n
t = (∇xg)(X

n
T) +

(T

t
(∇xH

0
r)(X

n
r ,Y

n
r ,Z

n
r , ν

n
r) dr +

(T

t
Z n
r dWr .

◮ See [Reisinger and Zhang, 2020] for related work.

18 / 44

Regularity of Control

+
,-

,.

ν∗t = argminν∈Vq
Hσ

t (Xt ,Yt ,Zt , ν),

Xt = ξ +
(t

0

(
Φr (Xr , ν

∗
r) dr +

(t

0

(
Γr (Xr , ν

∗
r (da)) dWr , t ∈ [0,T] ,

Yt = (∇xg)(XT) +
(T

t
(∇xHr)(Xr ,Yr ,Zr , ν

∗
r) dr +

(T

t
Zr dWr .

If (Y ,Z) where Markov, then we would have that ν∗ ∈ VM
q (Markov).

We proceed by iteration. Let ν0 ∈ VX ,W 2

q . For n ≥ 0 define

+
,,-

,,.

νn+1
t = Z−1e

−2

σ2
δH0

t
δm (X n

t ,Y
n
t ,Z

n
t ,ν

n
t ,a)γ(a) , Z =

(
e

−2

σ2
δH0

t
δm (X n

t ,Y
n
t ,Z

n
t ,ν

n
t ,a)γ(a)da ,

X n
t = ξ +

(t

0

(
Φr (X

n
r , ν

n
r) dr +

(t

0

(
Γr (X

n
r , ν

n
r) dWr , t ∈ [0,T] ,

Y n
t = (∇xg)(X

n
T) +

(T

t
(∇xH

0
r)(X

n
r ,Y

n
r ,Z

n
r , ν

n
r) dr +

(T

t
Z n
r dWr .

◮ See [Reisinger and Zhang, 2020] for related work.

18 / 44

We have

un(t, x) := Y
n,(t,x)
t and Z

n,(t,Xt)
t = ∇xu

n(t,Xt)Γt(X
n
t , ν

n(X n
t))

For suitable test function one can show that
&&&&
"

∇xν
n+1
t (x , a)da

&&&& ≤
4

σ2
sup
a

‖
!
∇x

H0
t

δm

#
(x , νn(x), a)‖ ,

&&&&
"

f (a)∇xν
n+1
t (x , a)da

&&&& ≤
4

σ2
sup
a

‖
!
∇x

H0
t

δm

#
(x , νn(·, x), a)‖

"
f (a)νn+1(a, x)da ,

For large σ conclude by Arzelá-Ascoli theorem.

19 / 44

We have

un(t, x) := Y
n,(t,x)
t and Z

n,(t,Xt)
t = ∇xu

n(t,Xt)Γt(X
n
t , ν

n(X n
t))

For suitable test function one can show that
&&&&
"

∇xν
n+1
t (x , a)da

&&&& ≤
4

σ2
sup
a

‖
!
∇x

H0
t

δm

#
(x , νn(x), a)‖ ,

&&&&
"

f (a)∇xν
n+1
t (x , a)da

&&&& ≤
4

σ2
sup
a

‖
!
∇x

H0
t

δm

#
(x , νn(·, x), a)‖

"
f (a)νn+1(a, x)da ,

For large σ conclude by Arzelá-Ascoli theorem.

19 / 44

We have

un(t, x) := Y
n,(t,x)
t and Z

n,(t,Xt)
t = ∇xu

n(t,Xt)Γt(X
n
t , ν

n(X n
t))

For suitable test function one can show that
&&&&
"

∇xν
n+1
t (x , a)da

&&&& ≤
4

σ2
sup
a

‖
!
∇x

H0
t

δm

#
(x , νn(x), a)‖ ,

&&&&
"

f (a)∇xν
n+1
t (x , a)da

&&&& ≤
4

σ2
sup
a

‖
!
∇x

H0
t

δm

#
(x , νn(·, x), a)‖

"
f (a)νn+1(a, x)da ,

For large σ conclude by Arzelá-Ascoli theorem.

19 / 44

Generative modelling

20 / 44

Generative modelling
◮ Generative models such as GANs or VAEs demonstrated a great

success in seemingly high dimensional setups.

◮ Input: Source distribution µ and target distribution ν i.e
input-output data

◮ A generative model is a transport map T from µ to ν i.e T is a map
that “pushes µ onto ν”. We write T#µ = ν.

◮ Parametrise transport map T (θ), θ ∈ Rp, e.g some network
architecture or Heston model

◮ Seek θ% s.t T (θ%)#µ ≈ ν.
◮ Need to make the choice of the metric

D(T (θ)#µ, ν) := sup
f∈K

‖
!

f (x)(T (θ)#µ)(dx)−
!

f (x)ν(dx)‖

◮ K could be set of options we want to calibrate to, could be neural
network

◮ The modelling choices are
1. metric D
2. parametrisation of T
3. algorithm used for training!!!

21 / 44

Generative modelling
◮ Generative models such as GANs or VAEs demonstrated a great

success in seemingly high dimensional setups.
◮ Input: Source distribution µ and target distribution ν i.e

input-output data

◮ A generative model is a transport map T from µ to ν i.e T is a map
that “pushes µ onto ν”. We write T#µ = ν.

◮ Parametrise transport map T (θ), θ ∈ Rp, e.g some network
architecture or Heston model

◮ Seek θ% s.t T (θ%)#µ ≈ ν.
◮ Need to make the choice of the metric

D(T (θ)#µ, ν) := sup
f∈K

‖
!

f (x)(T (θ)#µ)(dx)−
!

f (x)ν(dx)‖

◮ K could be set of options we want to calibrate to, could be neural
network

◮ The modelling choices are
1. metric D
2. parametrisation of T
3. algorithm used for training!!!

21 / 44

Generative modelling
◮ Generative models such as GANs or VAEs demonstrated a great

success in seemingly high dimensional setups.
◮ Input: Source distribution µ and target distribution ν i.e

input-output data
◮ A generative model is a transport map T from µ to ν i.e T is a map

that “pushes µ onto ν”. We write T#µ = ν.

◮ Parametrise transport map T (θ), θ ∈ Rp, e.g some network
architecture or Heston model

◮ Seek θ% s.t T (θ%)#µ ≈ ν.
◮ Need to make the choice of the metric

D(T (θ)#µ, ν) := sup
f∈K

‖
!

f (x)(T (θ)#µ)(dx)−
!

f (x)ν(dx)‖

◮ K could be set of options we want to calibrate to, could be neural
network

◮ The modelling choices are
1. metric D
2. parametrisation of T
3. algorithm used for training!!!

21 / 44

Generative modelling
◮ Generative models such as GANs or VAEs demonstrated a great

success in seemingly high dimensional setups.
◮ Input: Source distribution µ and target distribution ν i.e

input-output data
◮ A generative model is a transport map T from µ to ν i.e T is a map

that “pushes µ onto ν”. We write T#µ = ν.
◮ Parametrise transport map T (θ), θ ∈ Rp, e.g some network

architecture or Heston model

◮ Seek θ% s.t T (θ%)#µ ≈ ν.
◮ Need to make the choice of the metric

D(T (θ)#µ, ν) := sup
f∈K

‖
!

f (x)(T (θ)#µ)(dx)−
!

f (x)ν(dx)‖

◮ K could be set of options we want to calibrate to, could be neural
network

◮ The modelling choices are
1. metric D
2. parametrisation of T
3. algorithm used for training!!!

21 / 44

Generative modelling
◮ Generative models such as GANs or VAEs demonstrated a great

success in seemingly high dimensional setups.
◮ Input: Source distribution µ and target distribution ν i.e

input-output data
◮ A generative model is a transport map T from µ to ν i.e T is a map

that “pushes µ onto ν”. We write T#µ = ν.
◮ Parametrise transport map T (θ), θ ∈ Rp, e.g some network

architecture or Heston model
◮ Seek θ% s.t T (θ%)#µ ≈ ν.

◮ Need to make the choice of the metric

D(T (θ)#µ, ν) := sup
f∈K

‖
!

f (x)(T (θ)#µ)(dx)−
!

f (x)ν(dx)‖

◮ K could be set of options we want to calibrate to, could be neural
network

◮ The modelling choices are
1. metric D
2. parametrisation of T
3. algorithm used for training!!!

21 / 44

Generative modelling
◮ Generative models such as GANs or VAEs demonstrated a great

success in seemingly high dimensional setups.
◮ Input: Source distribution µ and target distribution ν i.e

input-output data
◮ A generative model is a transport map T from µ to ν i.e T is a map

that “pushes µ onto ν”. We write T#µ = ν.
◮ Parametrise transport map T (θ), θ ∈ Rp, e.g some network

architecture or Heston model
◮ Seek θ% s.t T (θ%)#µ ≈ ν.
◮ Need to make the choice of the metric

D(T (θ)#µ, ν) := sup
f∈K

‖
!

f (x)(T (θ)#µ)(dx)−
!

f (x)ν(dx)‖

◮ K could be set of options we want to calibrate to, could be neural
network

◮ The modelling choices are
1. metric D
2. parametrisation of T
3. algorithm used for training!!!

21 / 44

Generative modelling
◮ Generative models such as GANs or VAEs demonstrated a great

success in seemingly high dimensional setups.
◮ Input: Source distribution µ and target distribution ν i.e

input-output data
◮ A generative model is a transport map T from µ to ν i.e T is a map

that “pushes µ onto ν”. We write T#µ = ν.
◮ Parametrise transport map T (θ), θ ∈ Rp, e.g some network

architecture or Heston model
◮ Seek θ% s.t T (θ%)#µ ≈ ν.
◮ Need to make the choice of the metric

D(T (θ)#µ, ν) := sup
f∈K

‖
!

f (x)(T (θ)#µ)(dx)−
!

f (x)ν(dx)‖

◮ K could be set of options we want to calibrate to, could be neural
network

◮ The modelling choices are
1. metric D
2. parametrisation of T
3. algorithm used for training!!!

21 / 44

Generative modelling with causal transport

Fix m" ∈ P([0,T]× Rd) to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case
m0 := L(ξ)⊗ L(W), into m".

There is a measurable map Gµ : Rd × C [0,T]d → C [0,T]d such that
X (µ) = Gµ(ξ, (Ws)s∈[0,T]), and Xt(µ) := Gµ

t (ξ, (Ws∧t)s∈[0,T])

one can view solution map as a generative model that maps L(ξ)⊗ L(W) into
(Gµ

t)#m0. Note that by construction Gµ is a causal transport map

One then seeks µ" such that Gµ#

m0 is a good approximation of m" optimisation

problem e.g

Jσ(ν, ξ) := EW

1& T

0

1
log

-
mt(Xt(ν))

m"
t (Xt(ν))

.
+

σ2

2
Ent(νt)

2
dt

333X0(ν) = ξ

2
.

The above optimization problem does not fit within the framework of what I presented
about neural SDE.

◮ See [Acciaio et al., 2019] for related work

22 / 44

Generative modelling with causal transport

Fix m" ∈ P([0,T]× Rd) to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case
m0 := L(ξ)⊗ L(W), into m".

There is a measurable map Gµ : Rd × C [0,T]d → C [0,T]d such that
X (µ) = Gµ(ξ, (Ws)s∈[0,T]), and Xt(µ) := Gµ

t (ξ, (Ws∧t)s∈[0,T])

one can view solution map as a generative model that maps L(ξ)⊗ L(W) into
(Gµ

t)#m0. Note that by construction Gµ is a causal transport map

One then seeks µ" such that Gµ#

m0 is a good approximation of m" optimisation

problem e.g

Jσ(ν, ξ) := EW

1& T

0

1
log

-
mt(Xt(ν))

m"
t (Xt(ν))

.
+

σ2

2
Ent(νt)

2
dt

333X0(ν) = ξ

2
.

The above optimization problem does not fit within the framework of what I presented
about neural SDE.

◮ See [Acciaio et al., 2019] for related work

22 / 44

Generative modelling with causal transport

Fix m" ∈ P([0,T]× Rd) to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case
m0 := L(ξ)⊗ L(W), into m".

There is a measurable map Gµ : Rd × C [0,T]d → C [0,T]d such that
X (µ) = Gµ(ξ, (Ws)s∈[0,T]), and Xt(µ) := Gµ

t (ξ, (Ws∧t)s∈[0,T])

one can view solution map as a generative model that maps L(ξ)⊗ L(W) into
(Gµ

t)#m0. Note that by construction Gµ is a causal transport map

One then seeks µ" such that Gµ#

m0 is a good approximation of m" optimisation

problem e.g

Jσ(ν, ξ) := EW

1& T

0

1
log

-
mt(Xt(ν))

m"
t (Xt(ν))

.
+

σ2

2
Ent(νt)

2
dt

333X0(ν) = ξ

2
.

The above optimization problem does not fit within the framework of what I presented
about neural SDE.

◮ See [Acciaio et al., 2019] for related work

22 / 44

Generative modelling with causal transport

Fix m" ∈ P([0,T]× Rd) to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case
m0 := L(ξ)⊗ L(W), into m".

There is a measurable map Gµ : Rd × C [0,T]d → C [0,T]d such that
X (µ) = Gµ(ξ, (Ws)s∈[0,T]), and Xt(µ) := Gµ

t (ξ, (Ws∧t)s∈[0,T])

one can view solution map as a generative model that maps L(ξ)⊗ L(W) into
(Gµ

t)#m0. Note that by construction Gµ is a causal transport map

One then seeks µ" such that Gµ#

m0 is a good approximation of m" optimisation

problem e.g

Jσ(ν, ξ) := EW

1& T

0

1
log

-
mt(Xt(ν))

m"
t (Xt(ν))

.
+

σ2

2
Ent(νt)

2
dt

333X0(ν) = ξ

2
.

The above optimization problem does not fit within the framework of what I presented
about neural SDE.

◮ See [Acciaio et al., 2019] for related work

22 / 44

Generative modelling with causal transport

Fix m" ∈ P([0,T]× Rd) to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case
m0 := L(ξ)⊗ L(W), into m".

There is a measurable map Gµ : Rd × C [0,T]d → C [0,T]d such that
X (µ) = Gµ(ξ, (Ws)s∈[0,T]), and Xt(µ) := Gµ

t (ξ, (Ws∧t)s∈[0,T])

one can view solution map as a generative model that maps L(ξ)⊗ L(W) into
(Gµ

t)#m0. Note that by construction Gµ is a causal transport map

One then seeks µ" such that Gµ#

m0 is a good approximation of m" optimisation

problem e.g

Jσ(ν, ξ) := EW

1& T

0

1
log

-
mt(Xt(ν))

m"
t (Xt(ν))

.
+

σ2

2
Ent(νt)

2
dt

333X0(ν) = ξ

2
.

The above optimization problem does not fit within the framework of what I presented
about neural SDE.

◮ See [Acciaio et al., 2019] for related work

22 / 44

Generative modelling with causal transport

Fix m" ∈ P([0,T]× Rd) to be a target distribution.

The aim of the generative model is to map some basic distribution, in our case
m0 := L(ξ)⊗ L(W), into m".

There is a measurable map Gµ : Rd × C [0,T]d → C [0,T]d such that
X (µ) = Gµ(ξ, (Ws)s∈[0,T]), and Xt(µ) := Gµ

t (ξ, (Ws∧t)s∈[0,T])

one can view solution map as a generative model that maps L(ξ)⊗ L(W) into
(Gµ

t)#m0. Note that by construction Gµ is a causal transport map

One then seeks µ" such that Gµ#

m0 is a good approximation of m" optimisation

problem e.g

Jσ(ν, ξ) := EW

1& T

0

1
log

-
mt(Xt(ν))

m"
t (Xt(ν))

.
+

σ2

2
Ent(νt)

2
dt

333X0(ν) = ξ

2
.

The above optimization problem does not fit within the framework of what I presented
about neural SDE.

◮ See [Acciaio et al., 2019] for related work

22 / 44

Robust pricing and hedging via neural
SDEs

23 / 44

Model Selection

Until recently, models in finance and economics were mostly conceived in
a three step fashion:

◮ gathering statistical properties of the underlying time-series or the so
called stylized facts

◮ handcrafting a parsimonious model, which would best capture the
desired market characteristics without adding any needless
complexity and

◮ calibration and validation of the handcrafted model.

... model complexity was undesirable

24 / 44

Model Selection

Until recently, models in finance and economics were mostly conceived in
a three step fashion:

◮ gathering statistical properties of the underlying time-series or the so
called stylized facts

◮ handcrafting a parsimonious model, which would best capture the
desired market characteristics without adding any needless
complexity and

◮ calibration and validation of the handcrafted model.

... model complexity was undesirable

24 / 44

Model Selection

Until recently, models in finance and economics were mostly conceived in
a three step fashion:

◮ gathering statistical properties of the underlying time-series or the so
called stylized facts

◮ handcrafting a parsimonious model, which would best capture the
desired market characteristics without adding any needless
complexity and

◮ calibration and validation of the handcrafted model.

... model complexity was undesirable

24 / 44

Model Selection

Until recently, models in finance and economics were mostly conceived in
a three step fashion:

◮ gathering statistical properties of the underlying time-series or the so
called stylized facts

◮ handcrafting a parsimonious model, which would best capture the
desired market characteristics without adding any needless
complexity and

◮ calibration and validation of the handcrafted model.

... model complexity was undesirable

24 / 44

Classical Risk Models:

Pros:

◮ Interpretable parameters

◮ Relatively easy to calibrate with relatively small amount of data

◮ Several decades of underpinning research

Cons:

◮ Lack of systematic framework for model selection

◮ Knighting uncertainty (Unknown unknowns)

◮ limited expressivity

25 / 44

Classical Risk Models:

Pros:

◮ Interpretable parameters

◮ Relatively easy to calibrate with relatively small amount of data

◮ Several decades of underpinning research

Cons:

◮ Lack of systematic framework for model selection

◮ Knighting uncertainty (Unknown unknowns)

◮ limited expressivity

25 / 44

Model Calibration

Classical Calibration:

◮ Pick a parametric model (St(θ))t∈[0,T] (e.g an Itô process) with
parameters θ ∈ Rp

◮ Parametric model induces martingale measure Q(θ)

◮ Input Data: prices of traded derivatives p(Φi)
M
i=0 with corresponding

payoffs (Φi)
M
i=0

◮ Output : θ∗ such that p(Φi) ≈ EQ(Θ∗)[Φi]

26 / 44

Model Calibration

Classical Calibration:

◮ Pick a parametric model (St(θ))t∈[0,T] (e.g an Itô process) with
parameters θ ∈ Rp

◮ Parametric model induces martingale measure Q(θ)

◮ Input Data: prices of traded derivatives p(Φi)
M
i=0 with corresponding

payoffs (Φi)
M
i=0

◮ Output : θ∗ such that p(Φi) ≈ EQ(Θ∗)[Φi]

26 / 44

Model Calibration

Classical Calibration:

◮ Pick a parametric model (St(θ))t∈[0,T] (e.g an Itô process) with
parameters θ ∈ Rp

◮ Parametric model induces martingale measure Q(θ)

◮ Input Data: prices of traded derivatives p(Φi)
M
i=0 with corresponding

payoffs (Φi)
M
i=0

◮ Output : θ∗ such that p(Φi) ≈ EQ(Θ∗)[Φi]

26 / 44

Model Calibration

Classical Calibration:

◮ Pick a parametric model (St(θ))t∈[0,T] (e.g an Itô process) with
parameters θ ∈ Rp

◮ Parametric model induces martingale measure Q(θ)

◮ Input Data: prices of traded derivatives p(Φi)
M
i=0 with corresponding

payoffs (Φi)
M
i=0

◮ Output : θ∗ such that p(Φi) ≈ EQ(Θ∗)[Φi]

26 / 44

Robust Price bounds

◮ There are infinitely many models that are consistent with the market

◮ M - set of all martingale measures that are calibrated to data

◮ Compute conservative bounds for the price

sup
Q∈M

E [Ψ] and inf
Q∈M

E [Ψ]

◮ Use duality theory to deduce (semi-static) hedging strategy

◮ The obtain bounds typically to wide to be of practical value

◮ Challenges:

a) Incorporate prior information to restrict a search space M
b) Design efficient algorithms for computing price bounds and

corresponding hedges

27 / 44

Robust Price bounds

◮ There are infinitely many models that are consistent with the market

◮ M - set of all martingale measures that are calibrated to data

◮ Compute conservative bounds for the price

sup
Q∈M

E [Ψ] and inf
Q∈M

E [Ψ]

◮ Use duality theory to deduce (semi-static) hedging strategy

◮ The obtain bounds typically to wide to be of practical value

◮ Challenges:

a) Incorporate prior information to restrict a search space M
b) Design efficient algorithms for computing price bounds and

corresponding hedges

27 / 44

Robust Price bounds

◮ There are infinitely many models that are consistent with the market

◮ M - set of all martingale measures that are calibrated to data

◮ Compute conservative bounds for the price

sup
Q∈M

E [Ψ] and inf
Q∈M

E [Ψ]

◮ Use duality theory to deduce (semi-static) hedging strategy

◮ The obtain bounds typically to wide to be of practical value

◮ Challenges:

a) Incorporate prior information to restrict a search space M
b) Design efficient algorithms for computing price bounds and

corresponding hedges

27 / 44

Robust Price bounds

◮ There are infinitely many models that are consistent with the market

◮ M - set of all martingale measures that are calibrated to data

◮ Compute conservative bounds for the price

sup
Q∈M

E [Ψ] and inf
Q∈M

E [Ψ]

◮ Use duality theory to deduce (semi-static) hedging strategy

◮ The obtain bounds typically to wide to be of practical value

◮ Challenges:

a) Incorporate prior information to restrict a search space M
b) Design efficient algorithms for computing price bounds and

corresponding hedges

27 / 44

Robust Price bounds

◮ There are infinitely many models that are consistent with the market

◮ M - set of all martingale measures that are calibrated to data

◮ Compute conservative bounds for the price

sup
Q∈M

E [Ψ] and inf
Q∈M

E [Ψ]

◮ Use duality theory to deduce (semi-static) hedging strategy

◮ The obtain bounds typically to wide to be of practical value

◮ Challenges:

a) Incorporate prior information to restrict a search space M
b) Design efficient algorithms for computing price bounds and

corresponding hedges

27 / 44

ClaVVical RiVk ModelV GeneUaWiYe ModelV¬

RobXVW Finance¬

NeXUal SDEV

28 / 44

Neural SDEs

◮ We build an Itô process (X θ
t)t∈[0,T], with parameters θ ∈ Rp

dSθ
t = rSθ

t dt + σS(t,X θ
t , θ) dWt ,

dV θ
t = bV (t,X θ

t , θ) dt + σV (t,X θ
t , θ) dWt ,

X θ
t = (Sθ

t ,V
θ
t) ,

where σS , bV ,σV are given by neural networks (can be
path-depedend)

◮ The model induces a martingale probability measure Q(θ)

◮ Solution map is an instance of casual transport

◮ See [Cuchiero et al., 2020] for neural SDEs with a prior on vol
process.

◮ See [Arribas et al., 2020] for Sig-SDEs (neural SDE in a signature
feature space)

◮ Neural SDEs are easy to work with e.g consistent change from Q to
P.

29 / 44

Neural SDEs

◮ We build an Itô process (X θ
t)t∈[0,T], with parameters θ ∈ Rp

dSθ
t = rSθ

t dt + σS(t,X θ
t , θ) dWt ,

dV θ
t = bV (t,X θ

t , θ) dt + σV (t,X θ
t , θ) dWt ,

X θ
t = (Sθ

t ,V
θ
t) ,

where σS , bV ,σV are given by neural networks (can be
path-depedend)

◮ The model induces a martingale probability measure Q(θ)

◮ Solution map is an instance of casual transport

◮ See [Cuchiero et al., 2020] for neural SDEs with a prior on vol
process.

◮ See [Arribas et al., 2020] for Sig-SDEs (neural SDE in a signature
feature space)

◮ Neural SDEs are easy to work with e.g consistent change from Q to
P.

29 / 44

Neural SDEs

◮ We build an Itô process (X θ
t)t∈[0,T], with parameters θ ∈ Rp

dSθ
t = rSθ

t dt + σS(t,X θ
t , θ) dWt ,

dV θ
t = bV (t,X θ

t , θ) dt + σV (t,X θ
t , θ) dWt ,

X θ
t = (Sθ

t ,V
θ
t) ,

where σS , bV ,σV are given by neural networks (can be
path-depedend)

◮ The model induces a martingale probability measure Q(θ)

◮ Solution map is an instance of casual transport

◮ See [Cuchiero et al., 2020] for neural SDEs with a prior on vol
process.

◮ See [Arribas et al., 2020] for Sig-SDEs (neural SDE in a signature
feature space)

◮ Neural SDEs are easy to work with e.g consistent change from Q to
P.

29 / 44

Neural SDEs

i) Calibration to market prices Find model parameters θ∗ such that
model prices match market prices:

θ∗ ∈ argmin
θ∈Θ

M3

i=1

ℓ(EQ(θ)[Φi], p(Φi)) .

ii) Robust pricing Find model parameters θl,∗ and θu,∗ which provide
robust arbitrage-free price bounds for an illiquid derivative, subject to
available market data:

θl,∗ ∈ argmin
θ∈Θ

EQ(θ)[Ψ] , subject to
M3

i=1

ℓ(EQ(θ)[Φi], p(Φi)) = 0 ,

θu,∗ ∈ argmax
θ∈Θ

EQ(θ)[Ψ], subject to
M3

i=1

ℓ(EQ(θ)[Φi], p(Φi)) = 0 .

where ℓ : R× R → [0,∞) is a convex loss function such that
minx∈R,y∈R ℓ(x , y) = 0.

30 / 44

Neural SDEs

i) Calibration to market prices Find model parameters θ∗ such that
model prices match market prices:

θ∗ ∈ argmin
θ∈Θ

M3

i=1

ℓ(EQ(θ)[Φi], p(Φi)) .

ii) Robust pricing Find model parameters θl,∗ and θu,∗ which provide
robust arbitrage-free price bounds for an illiquid derivative, subject to
available market data:

θl,∗ ∈ argmin
θ∈Θ

EQ(θ)[Ψ] , subject to
M3

i=1

ℓ(EQ(θ)[Φi], p(Φi)) = 0 ,

θu,∗ ∈ argmax
θ∈Θ

EQ(θ)[Ψ], subject to
M3

i=1

ℓ(EQ(θ)[Φi], p(Φi)) = 0 .

where ℓ : R× R → [0,∞) is a convex loss function such that
minx∈R,y∈R ℓ(x , y) = 0.

30 / 44

Neural SDEs

Let QN(θ) := 1
N

4N
i=1 δX i,θ be empirical approximation of Q(θ).

From CLT,

P
1
EQ(θ)[Φ] ∈

#
EQN (θ)[Φ]− zα/2

σ√
N
,EQN (θ)[Φ] + zα/2

σ√
N

$2
→ 1

where σ =
5
Var[Φ] .

We seek a random variable Φcv such that:

EQN (θ)[Φcv] = E[Φ] and Var[Φcv] < Var[Φ] .

31 / 44

Neural SDEs

Let QN(θ) := 1
N

4N
i=1 δX i,θ be empirical approximation of Q(θ).

From CLT,

P
1
EQ(θ)[Φ] ∈

#
EQN (θ)[Φ]− zα/2

σ√
N
,EQN (θ)[Φ] + zα/2

σ√
N

$2
→ 1

where σ =
5
Var[Φ] . We seek a random variable Φcv such that:

EQN (θ)[Φcv] = E[Φ] and Var[Φcv] < Var[Φ] .

31 / 44

Stochastic Optimisation
Let M = 1 and the loss function

h(θ) = ℓ
)
EQ(θ)[Φcv], p(Φ)

*
.

Then in the gradient step update we have

∂θh(θ) = ∂xℓ
/
EQ[Φcv (X θ)], p(Φ)

0
EQ[∂θΦ(X

θ)] ,

Since ℓ is typically not an identity function, a mini-batch estimator of
∂θh(θ), obtained by replacing Q with QN given by

∂θh
N(θ) := ∂xℓ

)
EQN

[Φcv (X θ)], p(Φ)
*
EQN

[∂θΦ(X
θ)] ,

is a biased estimator of ∂θh.

Lemma 5

For ℓ(x , y) = |x − y |2, we have

%%EQ 6
∂θh

N(θ)
7
− ∂θh(θ)

%% ≤ 2

N

/
VarQ[Φcv (X θ)]

01/2 /VarQ[∂θΦ(X θ)]
01/2

.

32 / 44

Stochastic Optimisation
Let M = 1 and the loss function

h(θ) = ℓ
)
EQ(θ)[Φcv], p(Φ)

*
.

Then in the gradient step update we have

∂θh(θ) = ∂xℓ
/
EQ[Φcv (X θ)], p(Φ)

0
EQ[∂θΦ(X

θ)] ,

Since ℓ is typically not an identity function, a mini-batch estimator of
∂θh(θ), obtained by replacing Q with QN given by

∂θh
N(θ) := ∂xℓ

)
EQN

[Φcv (X θ)], p(Φ)
*
EQN

[∂θΦ(X
θ)] ,

is a biased estimator of ∂θh.

Lemma 5

For ℓ(x , y) = |x − y |2, we have

%%EQ 6
∂θh

N(θ)
7
− ∂θh(θ)

%% ≤ 2

N

/
VarQ[Φcv (X θ)]

01/2 /VarQ[∂θΦ(X θ)]
01/2

.

32 / 44

Learning PDEs
Let

Xt = σ(t, (Xs∧t)s∈[0,T])dWt ,

Ft := F (t, (xs∧t)s∈[0,T]) = E
6
ψ((Xs)s∈[0,T])|(Xs∧t)s∈[0,T] = (xs∧t)s∈[0,T]

7

Martingale representation theorem

Ft = Ψ−
! T

t

Zs dWs .

With functional Itô calculus

Ft = ψ
/
(Xs)s∈[0,T]

0
−
! T

t

∇ωψ
/
(Xr∧s)r∈[0,T]

0
dXs .

◮ Can learn (parametric) path dependent PDEs
◮ We have unbiased approximation to the PDE by hybrid Monte

Carlo/deep learning, see [Vidales et al., 2018]

33 / 44

Learning PDEs
Let

Xt = σ(t, (Xs∧t)s∈[0,T])dWt ,

Ft := F (t, (xs∧t)s∈[0,T]) = E
6
ψ((Xs)s∈[0,T])|(Xs∧t)s∈[0,T] = (xs∧t)s∈[0,T]

7

Martingale representation theorem

Ft = Ψ−
! T

t

Zs dWs .

With functional Itô calculus

Ft = ψ
/
(Xs)s∈[0,T]

0
−
! T

t

∇ωψ
/
(Xr∧s)r∈[0,T]

0
dXs .

◮ Can learn (parametric) path dependent PDEs
◮ We have unbiased approximation to the PDE by hybrid Monte

Carlo/deep learning, see [Vidales et al., 2018]

33 / 44

Learning PDEs
Let

Xt = σ(t, (Xs∧t)s∈[0,T])dWt ,

Ft := F (t, (xs∧t)s∈[0,T]) = E
6
ψ((Xs)s∈[0,T])|(Xs∧t)s∈[0,T] = (xs∧t)s∈[0,T]

7

Martingale representation theorem

Ft = Ψ−
! T

t

Zs dWs .

With functional Itô calculus

Ft = ψ
/
(Xs)s∈[0,T]

0
−
! T

t

∇ωψ
/
(Xr∧s)r∈[0,T]

0
dXs .

◮ Can learn (parametric) path dependent PDEs
◮ We have unbiased approximation to the PDE by hybrid Monte

Carlo/deep learning, see [Vidales et al., 2018]

33 / 44

Learning PDEs
Let

Xt = σ(t, (Xs∧t)s∈[0,T])dWt ,

Ft := F (t, (xs∧t)s∈[0,T]) = E
6
ψ((Xs)s∈[0,T])|(Xs∧t)s∈[0,T] = (xs∧t)s∈[0,T]

7

Martingale representation theorem

Ft = Ψ−
! T

t

Zs dWs .

With functional Itô calculus

Ft = ψ
/
(Xs)s∈[0,T]

0
−
! T

t

∇ωψ
/
(Xr∧s)r∈[0,T]

0
dXs .

◮ Can learn (parametric) path dependent PDEs
◮ We have unbiased approximation to the PDE by hybrid Monte

Carlo/deep learning, see [Vidales et al., 2018]
33 / 44

Neural SDEs - Algorithm
Input: π = {t0, t1, . . . , tNsteps} time grid for numerical scheme.

Input: (Φi)
Nprices

i=1 option payoffs.
Input: Market option prices p(Φj), j = 1, . . . ,Nprices.
for epoch : 1 : Nepochs do

Generate Ntrn paths (xπ,θ,i
tn

)
Nsteps

n=0 := (sπ,θ,i
tn

, vπ,θ,i
tn

)
Nsteps

n=0 , i = 1, . . . ,Ntrn using
Euler scheme.
During one epoch: Freeze ξ, use Adam to update θ, where

θ = !argmin
θ

Nprices4

j=1

5

6ENtrn

7

8Φj

!
Xπ,θ

$
−

Nsteps−14

k=0

h̄(tk , X̃
π,
tk

, ξj)∆
˜̄Sπ,
tk

9

:

−p(Φj)
)2

During one epoch: Freeze θ, use Adam to update ξ, by optimising the sample
variance

ξ = !argmin
ξ

Nprices4

j=1

VarNtrn

7

8Φj

!
Xπ,θ

$
−

Nsteps−14

k=0

h̄(tk ,X
π,θ
tk

, ξj)∆
˜̄Sπ,θ
tk

9

:

end for
return θ, ξj for all prices (Φi)

Nprices

i=1 .

34 / 44

Results
We calibrate (local) Stochastic Volatility model

dSt = rStdt + σS(t, St ,Vt , ν)St dB
S
t , S0 = 1,

dVt = bV (Vt ,φ) dt + σV (Vt ,ϕ) dB
V
t , V0 = v0,

d〈BS ,BV 〉t = ρdt

to European option prices

p(Φ) := EQ(θ)[Φ] = e−rTEQ(θ)
6
(ST − K)+ | S0 = 1

7

for maturities of 2, 4, . . . , 12 months and typically 21 uniformly spaced
strikes between in [0.8, 1.2].

As an example of an illiquid derivative for which we wish to find robust
bounds we take the lookback option

p(Ψ) := EQ(θ)[Ψ] = e−rTEQ(θ)

#
max

t∈[0,T]
St − ST |X0 = 1

$
.

We generate synthetic data using Heston model.

35 / 44

Results
We calibrate (local) Stochastic Volatility model

dSt = rStdt + σS(t, St ,Vt , ν)St dB
S
t , S0 = 1,

dVt = bV (Vt ,φ) dt + σV (Vt ,ϕ) dB
V
t , V0 = v0,

d〈BS ,BV 〉t = ρdt

to European option prices

p(Φ) := EQ(θ)[Φ] = e−rTEQ(θ)
6
(ST − K)+ | S0 = 1

7

for maturities of 2, 4, . . . , 12 months and typically 21 uniformly spaced
strikes between in [0.8, 1.2].

As an example of an illiquid derivative for which we wish to find robust
bounds we take the lookback option

p(Ψ) := EQ(θ)[Ψ] = e−rTEQ(θ)

#
max

t∈[0,T]
St − ST |X0 = 1

$
.

We generate synthetic data using Heston model.

35 / 44

Results
We calibrate (local) Stochastic Volatility model

dSt = rStdt + σS(t, St ,Vt , ν)St dB
S
t , S0 = 1,

dVt = bV (Vt ,φ) dt + σV (Vt ,ϕ) dB
V
t , V0 = v0,

d〈BS ,BV 〉t = ρdt

to European option prices

p(Φ) := EQ(θ)[Φ] = e−rTEQ(θ)
6
(ST − K)+ | S0 = 1

7

for maturities of 2, 4, . . . , 12 months and typically 21 uniformly spaced
strikes between in [0.8, 1.2].

As an example of an illiquid derivative for which we wish to find robust
bounds we take the lookback option

p(Ψ) := EQ(θ)[Ψ] = e−rTEQ(θ)

#
max

t∈[0,T]
St − ST |X0 = 1

$
.

We generate synthetic data using Heston model.
35 / 44

Calibration to market prices

Figure: Vanilla option prices and implied volatility curves of the 10 calibrated
Neural SDEs vs. the market data for different maturities.

36 / 44

Robust pricing

Figure: Exotic option price are in blue; Calibration error i in grey. The three
box-plots in each group arise respectively from aiming for a lower bound, ad
hoc and upper bound price of illiquid derivative. Each box plot comes from 10
different runs of Neural SDE calibration.

37 / 44

Control Variate effect on training

Figure: Root Mean Squared Error of calibration to Vanilla option prices with
and without hedging strategy parametrisation

38 / 44

Joint SPX and VIX calibration with neural SDEs
Consider the Neural SDE

dSθ
t = Sθ

t σ(t,V
θ
t ; θ) dWt ,

dV θ
t = a(t,V θ

t ; θ) dt + b(t,V θ
t ; θ) dBt ,

ρ = 〈dW , dB〉t .

It can be shown that the VIX dynamics at time t ∈ [0,T] can be
expressed as

VIX2
t :=

1

∆τ
E

"! t+∆τ

t

σ2
s ds

%%%%%Ft

&
= − 2

∆τ
E
#
log

1
St+∆τ

St

2%%%%Ft

$
, ∆τ =

30

365

The VIX future with maturity maturity T is then given by

FVIX
t,T := E [VIXT |Ft]

VIX options are defined as

CVIX
t (T ,K) := E

8
(VIXT − K)+

%%%Ft

9
, PVIX

t (T ,K) := E
8
(K −VIXT)

+
%%%Ft

9
.

joint work with: Antoine Jacquier, Marc Sabate Vidales, David Siska,
Zan Zuric.

39 / 44

Calibration to market data

Figure: Calibration to market data (data source: OptionMetrics) containing
SPX options, VIX options an VIX future for T = 1, ..., 6 months

40 / 44

Calibration to market data

Figure: Calibrated neural SDE errors on SPX options and VIX options. Hatches
correspond to combinations of Maturity/Strike for which there was not market
data available

41 / 44

Key messages of this mini course

◮ Training neural nets is a sampling problem

◮ Gradient flow view on training neural networks provides
mathematical framework to study machine learning

◮ Probabilistic numerical analysis provides quantitative bounds that do
not suffer from the curse of dimensionality

◮ Machine learning perspective leads to new algorithms and
mathematical tools for (stochastic) control problems/quantitative
finance.

42 / 44

Key messages of this mini course

◮ Training neural nets is a sampling problem

◮ Gradient flow view on training neural networks provides
mathematical framework to study machine learning

◮ Probabilistic numerical analysis provides quantitative bounds that do
not suffer from the curse of dimensionality

◮ Machine learning perspective leads to new algorithms and
mathematical tools for (stochastic) control problems/quantitative
finance.

42 / 44

Key messages of this mini course

◮ Training neural nets is a sampling problem

◮ Gradient flow view on training neural networks provides
mathematical framework to study machine learning

◮ Probabilistic numerical analysis provides quantitative bounds that do
not suffer from the curse of dimensionality

◮ Machine learning perspective leads to new algorithms and
mathematical tools for (stochastic) control problems/quantitative
finance.

42 / 44

Key messages of this mini course

◮ Training neural nets is a sampling problem

◮ Gradient flow view on training neural networks provides
mathematical framework to study machine learning

◮ Probabilistic numerical analysis provides quantitative bounds that do
not suffer from the curse of dimensionality

◮ Machine learning perspective leads to new algorithms and
mathematical tools for (stochastic) control problems/quantitative
finance.

42 / 44

Some open questions

◮ Problem dependent choices of the metrics/Riemannian structures
may lead to more efficient sampling methods

◮ Novel approaches to the ’regularisation by noise’ for Transport PDEs

◮ Link between class of functions we aim to learn and the the
distribution over parameters space of neural networks (need for
non-asymptotic theory)

◮ Trained neural networks models are random functions hence we need
estimates for the uncertainty

◮ ...there are many many more.

43 / 44

Some open questions

◮ Problem dependent choices of the metrics/Riemannian structures
may lead to more efficient sampling methods

◮ Novel approaches to the ’regularisation by noise’ for Transport PDEs

◮ Link between class of functions we aim to learn and the the
distribution over parameters space of neural networks (need for
non-asymptotic theory)

◮ Trained neural networks models are random functions hence we need
estimates for the uncertainty

◮ ...there are many many more.

43 / 44

Some open questions

◮ Problem dependent choices of the metrics/Riemannian structures
may lead to more efficient sampling methods

◮ Novel approaches to the ’regularisation by noise’ for Transport PDEs

◮ Link between class of functions we aim to learn and the the
distribution over parameters space of neural networks (need for
non-asymptotic theory)

◮ Trained neural networks models are random functions hence we need
estimates for the uncertainty

◮ ...there are many many more.

43 / 44

Some open questions

◮ Problem dependent choices of the metrics/Riemannian structures
may lead to more efficient sampling methods

◮ Novel approaches to the ’regularisation by noise’ for Transport PDEs

◮ Link between class of functions we aim to learn and the the
distribution over parameters space of neural networks (need for
non-asymptotic theory)

◮ Trained neural networks models are random functions hence we need
estimates for the uncertainty

◮ ...there are many many more.

43 / 44

Some open questions

◮ Problem dependent choices of the metrics/Riemannian structures
may lead to more efficient sampling methods

◮ Novel approaches to the ’regularisation by noise’ for Transport PDEs

◮ Link between class of functions we aim to learn and the the
distribution over parameters space of neural networks (need for
non-asymptotic theory)

◮ Trained neural networks models are random functions hence we need
estimates for the uncertainty

◮ ...there are many many more.

43 / 44

References I

[Acciaio et al., 2019] Acciaio, B., Backhoff-Veraguas, J., and Carmona, R. (2019). Extended
mean field control problems: stochastic maximum principle and transport perspective. SIAM
Journal on Control and Optimization, 57(6):3666–3693.

[Arribas et al., 2020] Arribas, I. P., Salvi, C., and Szpruch, L. (2020). Sig-sdes model for
quantitative finance. arXiv preprint arXiv:2006.00218.

[Cuchiero et al., 2020] Cuchiero, C., Khosrawi, W., and Teichmann, J. (2020). A generative
adversarial network approach to calibration of local stochastic volatility models. arXiv preprint
arXiv:2005.02505.

[Gobet and Labart, 2010] Gobet, E. and Labart, C. (2010). Solving bsde with adaptive control
variate. SIAM Journal on Numerical Analysis, 48(1):257–277.

[Kerimkulov et al., 2020] Kerimkulov, B., Šǐska, D., and Szpruch, L. (2020). Exponential
convergence and stability of howard’s policy improvement algorithm for controlled diffusions.
SIAM Journal on Control and Optimization, 58(3):1314–1340.

[Reisinger and Zhang, 2020] Reisinger, C. and Zhang, Y. (2020). Regularity and stability of
feedback relaxed controls. arXiv preprint arXiv:2001.03148.

[Vidales et al., 2018] Vidales, M. S., Šǐska, D., and Szpruch, L. (2018). Martingale functional
control variates via deep learning. arXiv:1810.05094.

44 / 44

