Mean Field Games: An Introduction

Xin Guo, UC Berkeley

ESSFM20, September 1, 2020

Overview

- Basics of MFG
- Relation between *N*-player game and MFG
- Computation and Learning for MFG

Part I: Basics of MFG

Outline

- 1 An overview
- 2 Key ideas and approaches
 - Toy examples
- 3 Existence of MFG solution
- 4 MFGs with general forms of controls
 - Singular controls
 - Impulse controls

MFG: (comprehensive treatment see Carmona and Delarue (2018) Vol I and II, Bensoussan, J. Frehse, and P. Yam (2013)

- the idea of "mean field" originated from statistical mechanics on weakly interacting particles
- theoretical works pioneered by Lasry and Lions (2007) and Huang,
 Malhamé and Caines (2006)
- stochastic strategic decision games with very large population of small interacting individuals
- about small interacting individuals, with each player choosing optimal strategy in view of the macroscopic information (mean field)

Main idea of MFG

- Take an *N*-player game
- When *N* is large, consider instead the "aggregated" version of the *N*-player game
- By (f)SLLN, the aggregated version, MFG, becomes an "approximation" of the N-player game, in terms of ϵ -Nash equilibrium

N-player game

$$\inf_{\alpha^i \in \mathcal{A}} E\{\int_0^T f^i(t, X_t^1, \cdots, X_t^N, \alpha_t^i) dt + g^i(T, X_T^1, \cdots, X_T^N, \alpha_T^i)\}$$
 subject to $dX_t^i = b^i(t, X_t^1, \cdots, X_t^N, \alpha_t^i) dt + \sigma dW_t^i$ and $X_0^i = x^i$

- X_t^i the state of player i at time t
- $m{\alpha}_t^i$ the action/control of player i at time t, in an appropriate control set $\mathcal A$
- f^i the running cost for player i
- lacksquare gⁱ the terminal cost for player i
- lacksquare b^i the drift term for player i
- lacksquare σ a volatility term for player i
- ullet W_t^i i.i.d. standard Brownian motions

From N-player game to MFG

Aggregation

$$\inf_{\alpha^i \in \mathcal{A}} E\left\{ \int_0^T \frac{1}{N} \sum_{i=1}^N f^i(t, X_t^1, \cdots, X_t^N, \alpha_t^i) dt \right.$$

$$\left. + \frac{1}{N} \sum_{i=1}^N g^i(T, X_T^1, \cdots, X_T^N, \alpha_T^i) \right\}$$

$$s.t. \ dX_t^i = \frac{1}{N} \sum_{i=1}^N b^i(t, X_t^1, \cdots, X_t^N, \alpha_t^i) dt + \sigma dW_t^i$$
and $X_0^i = x^i$

As $N \to \infty$,

MFG

$$\inf_{\alpha \in \mathcal{A}} E\{ \int_0^T f(t, X_t^i, \mu_t, \alpha_t) dt + g(T, X_T, \mu_T, \alpha_T) \}$$
 such that $dX_t^i = b(t, X_t^i, \mu_t, \alpha_t) dt + \sigma dW_t^i$ and $X_0^i = x^i$

with
$$\mu_t = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{X_t^i}$$

Assumptions (symmetry)

Players are indistinguisheable: they are rational, identical, and interchangeable

MFG

- revolutionizes the analysis of game theory
- provides simple approximation method for N-player game
- leads new theoretical development in stochastic analysis
 - Itô lemma for flows of probability measures
 - master equation for characterization of MFG

Toy model (Guéant, Lasry, and Lions (2011))

Question: deciding the starting time of a meeting

- identical N = 10K agents distributed on the negative half-line according to the distribution m_0 ($m_0(x) = 0$ for $x \ge 0$)
- **a** meeting scheduled to hold at x = 0 at time t_0
- actual meeting starting time T depending on the arrivals of participants (e.g., meeting starts when 90% agents arrive at 0)

Toy model for MFG

Assume

- a continuum of agents, as N is large
- agents are rational and interchangable
- $lackbox{1}{\bullet} X_t^i$ position of representative agent i at time t
- lacksquare α_t^i agent *i*'s action at time *t*
- $X_t^i = \alpha_t^i t + \sigma W_t^i$, with W_t^i i. i. d. standard Brownian motions
- $extbf{ iny } au_i$ the time at which agent i would like to arrive
- lacksquare real arrival time is $ilde{ au}^i= au^i+\sigma\epsilon^i$ where $\epsilon^i\sim \mathit{N}(0,1)$ i. i. d. with

$$\tilde{\tau}^i = \inf\{t > 0, X_t^i = 0\}$$

Agent i's objective

Minimize the expected cost functional $c^i(t_0, T, \tilde{\tau}^i, \alpha^i)$,

- lacksquare quadratic running cost with respect to $lpha^i$
- terminal cost including
 - $(T \tilde{\tau}^i)^+$: inconvenience due to waiting time
 - \bullet $(\tilde{\tau}^i t_0)^+$: lateness w.r.t. to scheduled time
 - $(\tilde{\tau}^i T)^+$: lateness w.r.t. to actual time

Solution approach

First, Fix T

$$\begin{aligned} & \min_{\alpha} E[c^{i}(t_{0}, T, \tilde{\tau}^{i}, \alpha^{i})] \\ s.t. \quad & X_{t}^{i} = \alpha_{t}^{i}t + \sigma W_{t}^{i}, \quad X_{0}^{i} = x_{0} \\ & \tilde{\tau}^{i} = \min\{s: X_{s}^{i} = 0\}; \end{aligned}$$

with α^* the optimal control of this problem

■ Based on α^* , get distribution of arrivals μ (all agents are identical). From μ , update T'. Repeat this process until a fixed point.

$$T \to \alpha^* \to T' \to {\alpha^*}' \to \cdots \to \text{fixed point}$$

Key insight from the toy example

- game interaction depends on the distribution of individual state
- aggregation simplifies computation
- solution approach is by iteration via Banach fixed point theorem

An MFG on \mathbb{R}^d over a time horizon [0, T],

MFG

$$\inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T f(t, X_t, \mu_t, \alpha_t) dt + g(T, X_T, \mu_T, \alpha_T) \right]$$

subject to

$$dX_t = b(t, X_t, \mu_t, \alpha_t)dt + \sigma(t, X_t, \mu_t, \alpha_t)dW_t$$
 $X_0 \sim \mu^0, \quad \mu_t = Law(X_t) \quad \forall t \in [0, T].$

Definition: solution to MFG

If there exists a control policy $\{\alpha_t^*\}_t$ and a flow of probability measures $\{\mu_t^*\}_t$ such that

lacksquare under $\{\mu_t^*\}_t$, $\{\alpha_t^*\}_t$ solves the optimal control problem

$$\inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\int_0^T f(t, X_t, \mu_t^*, \alpha_t) dt + g(T, X_T, \mu_T^*, \alpha_T) \right]$$

subjecto to

$$dX_t = b(t, X_t, \mu_t^*, \alpha_t)dt + \sigma(t, X_t, \mu_t^*, \alpha_t)dW_t, \quad X_0 \sim \mu^0;$$

• under $\{\alpha_t^*\}_t$, the controlled process $\{X_t^*\}_t$ given by

$$dX_t^* = b(t, X_t^*, \mu_t^*, \alpha_t^*)dt + \sigma(t, X_t^*, \mu_t^*, \alpha_t^*)dW_t, \quad X_0^* \sim \mu^0$$

satisfies $\mu_t^* = Law(X_t^*)$ for all t;

then the pair $(\{\alpha_t^*\}_t, \{\mu_t^*\}_t)$ is called a solution to the MFG.

PDE/control approach for MFG

- lacksquare (i) Fix a deterministic function $t \in [0,T]
 ightarrow \mu_t \in \mathcal{P}(\mathbb{R}^d)$
- (ii) Solve the stochastic control problem

$$\inf_{\alpha \in \mathcal{A}} \int_0^T f(t, X_t, \mu_t, \alpha_t) dt$$
s.t.
$$dX_t = b(t, X_t, \mu_t, \alpha_t) dt + \sigma dW_t \quad \text{and} \quad X_0 = x$$

- lacksquare (iii) Update the function $t\in[0,T] o \mu_t'\in\mathcal{P}(\mathbb{R}^d)$ so that $\mathcal{P}_{X_t}=\mu_t'$
- (iv) Repeat (ii) and (iii). If there exists a fixed point solution μ_t and α_t , then it is a solution for the MFG

First step: HJB equation

Solving the control problem yields

$$\partial_{s}v(s,x) + H(s,x,\nabla_{x}v(s,x),\nabla_{x}^{2}v(s,x)) = 0, \tag{HJB}$$

with terminal condition $v(T,x) = g(x,\mu_T)$, and the Hamiltonian

$$H(s,x,y,z) = \inf_{\alpha} \left\{ b(s,x,\mu_s,\alpha) \cdot y + \frac{1}{2} Tr(\sigma \sigma^T(s,x,\mu_s,\alpha)z) + f(s,x,\mu_s,\alpha) \right\}$$

Second step: FP equation

Updating $\{\mu_t\}_t$ for the controlled dynamic $\{X_t\}_t$ under the optimal policy $\{\alpha_t^*\}_t$, the density function m(s,x) of $\mu_s = Law(X_s)$ satisfies

$$\begin{split} \partial_{s} m(s,x) + \operatorname{div}_{x} \left(b(s,x,\mu_{s},\alpha_{s}^{*}) m(s,x) \right) \\ - \frac{1}{2} \operatorname{Tr} \left[\nabla_{x}^{2} \left(\sigma \sigma^{T}(s,x,\mu_{s},\alpha) m(s,x) \right) \right] = 0, \\ \int_{x} m(s,x) dx = 1, \ \forall s; \quad m(0,\cdot) = m^{0}(\cdot). \end{split}$$
 (FP)

Third step: iteration

The coupled HJB-FP system characterizes a mapping Γ

$$\Gamma: \{\mu_t\}_t \xrightarrow{\mathsf{HJB}} \{\alpha_t^*\}_t \xrightarrow{\mathsf{FP}} \mathsf{updated}\ \{\mu_t\}_t.$$

■ If Γ admits a fixed point $\{\mu_t^*\}_t$, then $(\{\mu_t^*\}_t, \{\alpha_t^*\}_t)$ is a solution to to the (MFG)

Fixed point solution

Schaefer's Fixed Point Theorem

Given a Banach space X. Suppose a mapping $A: X \to X$ is continuous and compact. If the set

$$\{u \in X | u = \lambda A(u) \text{ for some } \lambda \in [0,1]\}$$

is bounded, then A admits a fixed point.

Note: Banach fixed point theorem leads to a unique solution for a contraction mapping.

Existence of MFG solution

Lasry and Lions (2007) considers the class of MFG

$$b(s, x, \mu, \alpha) = -\alpha$$

•
$$\sigma(s, x, \mu, \alpha) \equiv \sigma$$
 for some given σ ;

•
$$f(s, x, \mu_s, \alpha) = L(x, \alpha) + \tilde{f}(s, x, m(s, x))$$
; and

$$g(x,\mu_T) = \tilde{g}(x,m(T,x)).$$

Existence of MFG solution (Lasry, Lions (2007))

Suppose

- if the density function m(s,x) belongs to $\mathcal{C}([0,T],\mathcal{P}^1(\mathbb{R}^d))$, then $\tilde{f}(s,x,m(s,x))$ and $\tilde{g}(x,m(T,x))$ are both (uniformly) bounded and continuous;
- \tilde{f} is continuous with respect to $m \in \mathcal{C}([0,T],\mathcal{P}^1(\mathbb{R}^d));$
- if $m \in \mathcal{C}^{k,\alpha}$, then $\tilde{f}, \tilde{g} \in \mathcal{C}^{k+1,\alpha}$;
- $\bar{H}(x,y)$ is smooth on $\mathbb{R}^d \times \mathbb{R}^d$ and there exists a constant c>0 such that for any (x,y),

$$|\partial_y \bar{H}(x,y)| \leq C(1+|y|), \quad |\partial_x \bar{H}(x,y)| \leq c(1+|y|).$$

Then the HJB-FP system admits a pair of solutions $(v^*(s,x),m^*(s,x))$, and the corresponding control-mean pair $(\{\alpha_t^*\}_t,\{\mu_t^*\}_t)$ is a solution of the MFG.

Notation

- $\mathcal{C}([0,T],\mathcal{P}^1(\mathbb{R}^d))$: set of continuous mappings from [0,T] to the set of probability measures $\mathcal{P}^1(\mathbb{R}^d)$ where $\int_{\mathbb{R}^d} |x| \mu(dx) < \infty$ for any $\mu \in \mathcal{P}^1(\mathbb{R}^d)$.
- $\mathcal{C}^{k,\alpha}$: set of \mathcal{C}^k functions with bounded and Hölder continuous of exponent α derivatives up to order k, for any integer $k \geq 0$ and $\alpha \in (0,1)$.

Several approaches for MFGs with regular controls

- PDE/control approach:
 backward HJB equation + forward Kolmogorov equation
 Lions and Lasry (2007), Huang, Malhame and Caines (2006), Lions, Lasry and Guánt (2009),
- Probabilistic approach: FBSDEs
 Buckdahn, Li and Peng (2009), Carmona and Delarue (2013)
- Master equation (and verification argument)
 Cardaliaguet, Delarue, Lasry, and Lions (2019)

Existence of MFGs

More general existence results of Lacker (2015)

- controls are not necessarily absolutely continuous
- adopting the notion of relaxed control, with measure selection argument to get strict Markovian MFG solution via convexity condition
- Kakutani-Fan-Glicksberg fixed point theorem on set-valued mapping Note: this argument could be adapted for MFGs with singular controls.

Singular controls

- more general mathematical framework as controls could be discontinuous
- adding gradient constraint to the HJB
- controlled processes give rise to Skorokhod problems
- stochastic maximum principle fails, and Hamiltonian diverges

Classical fuel follower problem

Single player, dynamics of its position given by

$$X_t = x + W_t + \xi_t,$$

- \blacksquare W_t standard Browian motion
- \bullet ξ_t controlled càdlàg process, with finite variation such that

$$\xi_t = \xi_t^+ - \xi_t^-$$

with ξ_t^+ and ξ_t^- non-decreasing càdlàg processes, $\xi_0^- = \xi_0^+ = 0$

• $\check{\xi}_t = \xi_t^+ + \xi_t^-$ accumulative fuel consumption

The objective is to minimize over all admissible controls ${\cal A}$

$$E\int_0^\infty e^{-\alpha t}\{d\check{\xi_t}+h(X_t)dt\}$$

- h convex, h(-x) = h(x), h''(x) decreasing and 0 < k < h''(x) < K
- admissible control set

$$\begin{split} \mathcal{A} &= \{(\xi_t^+, \xi_t^-) | \xi_t^+, \xi_t^-, \ \mathcal{F}^{W_t}\text{-progressively measurable,} \\ & \text{càdlàg non-decreasing, } \mathbb{E}[\int_0^\infty e^{-\alpha t} d\xi_t^+] < \infty, \\ & \mathbb{E}[\int_0^\infty e^{-\alpha t} d\xi_t^-] < \infty, \xi_{0-}^+ = \xi_{0-}^- = 0\} \end{split}$$

Solution

solving the HJB via smooth-fit-principle

$$\min\{\frac{1}{2}v''(x) + h(x) - \alpha v(x), 1 - v'(x), 1 + v'(x)\} = 0$$

• "bang-bang" type optimal control, with c>0 being the unique solution to

$$rac{1}{\sqrt{2lpha}} anh(c\sqrt{2lpha})=rac{p_1^{'}(c)-1}{p_1^{''}(c)}.$$

with

$$p_1(x) = E[\int_0^\infty e^{-\alpha t} h(x + B_t) dt].$$

Benes, Shepp and Witsenhausen (1980) and Karatzas (1983)

Existence of solutions to MFG with singular controls

- For singular control of bounded velocity Lacker (2018)
- For singular control of finite variation Fu and Horst (2017), Cao, G., and Lee (2019)

Example: cash management

- deterministic model
 Baumol (1952), Miller and Orr (1966)
- stochastic model with fixed and proportional cost Eppen and Fama (1968),
 Constantinides and Richard (1978)

Impulse controls

- Quasi-Variational Inequalities:
 Caffarelli and Friedman(1978, 1979), Bensoussan and Lions (1982)
- inventory controls:
 Harrison and Taylor (1978), Harrison, Sellke, and Taylor (1983),
 Sulem (1986)
- portfolio management with transaction cost:
 Davis and Norman ('90), Korn (1998, 1999), Øksendal and Sulem (2002)
- exchange rates:
 Jeanblanc-Piqué (1993), Cadenillas and Zapatero (1999),
- Insurance models: Candenillas, Choulli, Taksar and Zhang (2006)
- liquidity risk: Ly Vath et al. (2007)
- irreversible investment: Scheinkman and Zariphopoulou (2001)

Cash management

- cash balance as inventory for exchange
- withdrawal from cash balance at the end of each period
- fixed cost for broker's fee and proportional holding cost

Constantinides and Richard (1978)

 $X_t \in \mathbb{R}^n$: cash balance at time t

without intervention,

$$X(t) = \mu t + \sigma W(t), \quad X(0) = x,$$

where $\{W_t\}_{t\geq 0}$ a standard Brownian motion

• with intervention $\varphi = \{\tau_n, \xi_n\}_{n \geq 0} \in \mathcal{A}$

$$dX_t = \mu dt + \sigma dW_t + \sum_{n=1}^{\infty} \delta(t - \tau_n) \xi_n, \quad X_{0-} = x$$

- $\{\tau_n\}_{n\geq 1}$ a sequence of stopping times w.r.t. $\{\mathcal{F}_t^W\}$ s.t. $\tau_n \uparrow \infty$ a.s.
- $\xi_n \in \mathcal{F}_{\tau_n}^W$
- lacksquare $\mathcal A$ the set of all such controls

Objective Function

$$v(x) = \inf_{\varphi \in \mathcal{A}} J(x, \varphi) = \inf_{\varphi \in \mathcal{A}} E \left[\int_0^\infty e^{-rt} C(X(t)) dt + \sum_{n=1}^\infty e^{-r\tau_n} \phi(\xi_n) \right]$$

- running cost $C(x) = \max\{hx, -px\}$ where h, p > 0
- cost of control

$$\phi(x) = \begin{cases} K^{+} + k^{+}x, & x \ge 0 \\ K^{-} - k^{-}x, & x < 0 \end{cases} \quad K^{+}, K^{-}, k^{+}, k^{-} > 0$$

- zero control: $\phi(0) = K^+ > 0$
- discount rate r > 0

Quasi-Variational Inequality $(QVI)^1$

$$\min\left\{\frac{\sigma^2}{2}v'' - \mu v' - rv + C, \inf_{\xi}\phi(\xi) + v(x+\xi)\right\} = 0$$

- consider X(t-) = x, time interval $[t, t + \Delta t]$
- finite action space: either no control or control at time t
- no control: $v(X(t-)) \le E\left[\int_t^{t+\Delta t} e^{-r(s-t)} C(X(s)) ds\right] + e^{-rdt} v(X(t-) + \Delta X)$
- control at time t: $v(X(t-)) \le \inf_{\xi} \phi(\xi) + v(X(t-) + \xi)$
- \blacksquare sending Δt to 0 and applying Itô's formula

¹Constantinides and Richard (1978)

Contantinides and Richard (1978)

The (S, s) optimal strategy

- if $X_t \in \mathcal{C} = (q, s)$: no action;
- **X** reaches q (or initial $x \leq q$): raise it to Q immediately
- **X**_t reaches s (or initial $x \ge s$): lower it to S immediately

Impulse control vs regular control

- (S, s) policy and K-convexity
 Constantinides and Richard (1978)
- QVI vs classical HJB equation: additional nonlocal operators
- classical references: Benssousan and Lions (1982)
- how to adapt classical PDEs approach for regularity studies?
 G. and Wu (2010), Davis, G. and Wu (2012)

PDE tools for regularity

- Sobolev imbedding: $W^{2,p} \subset C^{1,\alpha}, \alpha = 1 n/p$
- Schauder's estimates: $Lu = f \in C^{\alpha} \Rightarrow u \in C^{2,\alpha}$
- Calderon-Zygmund estimates: $Lu = f \in L^p \Rightarrow u \in W^{2,p}$

K-convexity and regularity of PDEs

- lacksquare the nonlocal operator $\mathcal{M}u(x) := \inf_{\xi} \phi(\xi) + u(x+\xi)$
- $\mathcal{D}(x) := \{ \xi \in \mathbb{R}^n : \mathcal{M}v(x) = v(x+\xi) + B(\xi) \}$
- K-convexity is critical for the regularity of the value function

Key property

- For any point $x \in \mathcal{A}$ and $\xi(x) \in \mathcal{D}(x)$, then $x + \xi(x) \in \mathcal{C}$
- $Mu(x) \ge \mathcal{M}(x + \xi(x)) + B(\xi(x)) K$

This ensures

- a bound for the second difference quotient at x, and
- an appropriate estimate to apply Calderon-Zygmund estimate,
- lacksquare and eventual $W^{2,p}$ regularity for the value function

Existence of solutions to MFGs with impulse controls

Mostly open

- QVI form for "FP" equation Bertucci (2020)
- culprit: the nonlocal operator in QVI
- only known for special cases
 Basei, Cao, G. (2020) on cash management problem

Coming up next: N vs MFG

- MFG as an ϵ -NE approximation to *N*-player games
- N ≠ MFG comparisons through several examples
- master equations for convergence of N to MFG, CLT, and large deviations
 Cardaliaguet, Delarue, Lasry, and Lions (2015, 2019), Delarue,
 - Lacker, and Ramanan (2019), Bayraktar and Cohen (2018), Cecchin and Pelino (2018)