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An overview

MFG: (comprehensive treatment see Carmona and Delarue (2018) Vol |
and Il, Bensoussan, J. Frehse, and P. Yam (2013)

m the idea of “mean field" originated from statistical mechanics on
weakly interacting particles

m theoretical works pioneered by Lasry and Lions (2007) and Huang,
Malhamé and Caines (2006)

m stochastic strategic decision games with very large population of
small interacting individuals

m about small interacting individuals, with each player choosing
optimal strategy in view of the macroscopic information (mean field)
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An overview

Main idea of MFG

m Take an N-player game

m When N is large, consider instead the “aggregated” version of the
N-player game

m By (f)SLLN, the aggregated version, MFG, becomes an

“approximation” of the N-player game, in terms of e-Nash
equilibrium
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An overview

N-player game

inf E{/ t Xt17 aXtNaall.’)dt_ng(TaX':ll';"' aX'I,yaaiT)}

ale A
subject to dX!=bi(t, X!, - XN ol)dt + cdW]
and X} =x'

m X/ the state of player i at time t
m ! the action/control of player i at time ¢, in an appropriate control

set A

f' the running cost for player i
g’ the terminal cost for player i
b’ the drift term for player i

o a volatility term for player i
m W,/ i.i.d. standard Brownian motions
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An overview

From N-player game to MFG

Aggregation

T N
inf E =N fie, XL XN o) dt
A {/0 N; £ X o)
N

1 i
+ 28 (T X, ,XTN,aT)}
l:l

N
s.it. dXi = Z i, Xt XN al)dt + odW/

and X§=x'
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An overview

As N — oo,

inf £ / (6, XE, e )t + g(T, X, o, a7)}

such that dX/ = b(t, X!, p¢, a;)dt + cdW) and X = x'
with z: = limpy_ o0 % Efvzl Oxi

Assumptions (symmetry)

Players are indistinguisheable: they are rational, identical, and
interchangeable
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An overview

m revolutionizes the analysis of game theory
m provides simple approximation method for N-player game
m leads new theoretical development in stochastic analysis

m [t6 lemma for flows of probability measures
m master equation for characterization of MFG
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Key ideas and approaches Toy examples

Toy model (Guéant, Lasry, and Lions (2011))

Question: deciding the starting time of a meeting

m identical N = 10K agents distributed on the negative half-line
according to the distribution mg (mg(x) = 0 for x > 0)

m a meeting scheduled to hold at x = 0 at time ¢y

m actual meeting starting time T depending on the arrivals of
participants (e.g., meeting starts when 90% agents arrive at 0)
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Key ideas and approaches Toy examples

Toy model for MFG

Assume
m a continuum of agents, as N is large
m agents are rational and interchangable
m X/ position of representative agent i at time t
® ol agent i's action at time t
m X/ =ait+ oW/, with W/ i. i. d. standard Brownian motions
m 7; the time at which agent / would like to arrive
m real arrival time is 7' = 7/ 4 o€’ where ¢ ~ N(0,1) i. i. d. with

# =inf{t >0,X/ =0}
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Key ideas and approaches Toy examples

Agent i's objective

Minimize the expected cost functional ¢/(ty, T, 7', a'),
® quadratic running cost with respect to o
m terminal cost including
m (T —#)": inconvenience due to waiting time
m (7 —to)": lateness w.r.t. to scheduled time
m (7 — T)*: lateness w.r.t. to actual time
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Key ideas and approaches Toy examples

Solution approach

m First, Fix T
min E[c'(to, T, 7, a')]
sit. X =alt+oW, Xé =X
7 = min{s: X! = 0};

with o* the optimal control of this problem

m Based on a*, get distribution of arrivals p (all agents are identical).
From u, update T’. Repeat this process until a fixed point.

*

T—oa*"—= T —a — ... = fixed point
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Key ideas and approaches Toy examples

Key insight from the toy example

m game interaction depends on the distribution of individual state
m aggregation simplifies computation

m solution approach is by iteration via Banach fixed point theorem
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Existence of MFG solution

An MFG on R? over a time horizon [0, T],
MFG

inf E
acA

T
/ f(taXhH'l’aat)dt+g(TaXTa,U’T7aT)‘|
0
subject to
dXt = b(ta Xt7 e, at)dt + U(t; Xt7 e, at)th

Xo~p®, pe=Law(X;) Vte[0,T].
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Existence of MFG solution

Definition: solution to MFG

If there exists a control policy {a}}+ and a flow of probability measures
{p;}+ such that

m under {u}}:, {a;}: solves the optimal control problem

T
IE&E l/ f(t7thu’:>at)dt+g(T7XT,/[f['aaT)‘|
@ 0
subjecto to
dXt = b(t7 Xt7 ,LL:(7 O[t)dt + J(t> Xt7 ,LL:, at)dWh XO ~ /'LO;
m under {a}}:, the controlled process { X/ }: given by

dX; = b(t, X}, i, op)dt + o(t, X7, py, o )dWe, X5 ~ P

satisfies puf = Law(X;") for all t;
then the pair ({af}+, {u;}+¢) is called a solution to the MFG.
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Existence of MFG solution

PDE/control approach for MFG

(i) Fix a deterministic function t € [0, T] — u: € P(R9)
(

ii) Solve the stochastic control problem

acA
s.t. dXt = b(t,Xt7/,Lt,at)dt+0'th and XO =X

T
inf / f(t, Xt,/.l/t,Oét)dt
0

m (iii) Update the function t € [0, T] — p} € P(RY) so that Px, = u}
m (iv) Repeat (ii) and (iii). If there exists a fixed point solution y; and
«:, then it is a solution for the MFG
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Existence of MFG solution

First step: HJB equation

Solving the control problem yields
dsv(s,x) 4+ H(s, x, Vyv(s, x), V2v(s, x)) =0, (HJB)

with terminal condition v(T,x) = g(x, 1), and the Hamiltonian

1
H(s,x,y,z) = inf {b(s,x, ts, ) -y + 5 Tr(oo ™ (s, x, s, @)z) + f(s, X, s, a)}
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Existence of MFG solution

Second step: FP equation

Updating { .} for the controlled dynamic {X;}; under the optimal
policy {af}¢, the density function m(s, x) of us = Law(X;) satisfies

0sm(s, x) + divy (b(s, x, s, az)m(s, x))
_ %Tr [Vi (agT(s,x, ps, a)m(s, x))] =0, (FP)

/m(s,x)dx =1,Vs; m(0,-) = m°().
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Existence of MFG solution

Third step: iteration

m The coupled HJB-FP system characterizes a mapping I

F o {uede 222 {af}e 25 updated {pele.

m If T admits a fixed point {u}}:, then ({u}}e, {af}e) is a solution to
to the (MFG)
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Existence of MFG solution

Fixed point solution

Schaefer’'s Fixed Point Theorem

Given a Banach space X. Suppose a mapping A : X — X is continuous
and compact. If the set

{u € X|u = NA(u) for some X € [0, 1]}
is bounded, then A admits a fixed point.

Note: Banach fixed point theorem leads to a unique solution for a
contraction mapping.
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Existence of MFG solution

Existence of MFG solution

Lasry and Lions (2007) considers the class of MFG
m b(s,x,pu, ) = —«
m o(s,x,u,a) = o for some given o;
m 7(s,x, ps, @) = L(x,a) + (s, x, m(s, x)); and
m g(x pr) = E(x, m(T, x)).
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Existence of MFG solution

Existence of MFG solution (Lasry, Lions (2007))

Suppose
m if the density function m(s, x) belongs to C([0, T], P1(R)), then

f(s,x,m(s,x)) and g(x, m(T,x)) are both (uniformly) bounded and
continuous;

= f is continuous with respect to m € C([0, T], P1(R?));

m if meCk then f,g € Ckt1e;

m A(x,y) is smooth on R? x RY and there exists a constant ¢ > 0
such that for any (x, y),

10,H(x, )| < C(L+ |yl),  10cH(x,y)| < c(1+ |yl).

Then the HIB-FP system admits a pair of solutions (v*(s, x), m*(s, x)),
and the corresponding control-mean pair ({o} }+, {15 }+) is a solution of
the MFG.
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Existence of MFG solution

Notation

= C([0, T], PY(R9)): set of continuous mappings from [0, T] to the set
of probability measures P*(R) where [, [x|u(dx) < oo for any
w € PHRY).

m Cke: set of C* functions with bounded and Hélder continuous of

exponent « derivatives up to order k, for any integer k > 0 and
a € (0,1).
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Existence of MFG solution

Several approaches for MFGs with regular controls

m PDE/control approach:
backward HJB equation + forward Kolmogorov equation
Lions and Lasry (2007), Huang, Malhame and Caines (2006), Lions, Lasry
and Gudnt (2009),
m Probabilistic approach: FBSDEs
Buckdahn, Li and Peng (2009), Carmona and Delarue (2013)

m Master equation (and verification argument)
Cardaliaguet, Delarue, Lasry, and Lions (2019)
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Singular
Impu
MFGs with general forms of controls

Existence of MFGs

More general existence results of Lacker (2015)
m controls are not necessarily absolutely continuous

m adopting the notion of relaxed control, with measure selection
argument to get strict Markovian MFG solution via convexity
condition

m Kakutani-Fan-Glicksberg fixed point theorem on set-valued mapping

Note: this argument could be adapted for MFGs with singular controls.
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MFGs with general forms of controls

Singular controls

m more general mathematical framework as controls could be
discontinuous

m adding gradient constraint to the HJB
m controlled processes give rise to Skorokhod problems

m stochastic maximum principle fails, and Hamiltonian diverges
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Singular controls
Impulse controls
MFGs with general forms of controls

Classical fuel follower problem

Single player, dynamics of its position given by

Xe = x + Wi + &,

m W, standard Browian motion
m &; controlled cadlag process, with finite variation such that

ft:f?_f;

with & and & non-decreasing cadlag processes, & =& =0
m & =& + & accumulative fuel consumption
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Singular controls
Impulse controls

MFGs with general forms of controls

The objective is to minimize over all admissible controls A

E/OOO e Yt dE; + h(X;)dt}

m h convex, h(—x) = h(x), h"(x) decreasing and 0 < k < h"’(x) < K

m admissible control set

A = {(&7,6)165, ¢, FWe-progressively measurable,

o0
cadlag non-decreasing, IE[/ e *d¢f] < oo,
0

E| /0 e tde ] < o0, = & = 0}
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Slngular controls
Impuls ols
MFGs with general forms of controls

Solution

m solving the HJB via smooth-fit-principle
1
min{Ev”(x) + h(x) — av(x),1 —V/(x),1+ Vv'(x)} =0

m “bang-bang” type optimal control, with ¢ > 0 being the unique
solution to

Lanc 7() 1
g tanhlev2a) = = n

with
(o)
pi(x) = E[/ e “*h(x + B;)dt].
0
Benes, Shepp and Witsenhausen (1980) and Karatzas (1983)
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Singular control:
Impulse controls
MFGs with general forms of controls

Existence of solutions to MFG with singular controls

m For singular control of bounded velocity
Lacker (2018)

m For singular control of finite variation
Fu and Horst (2017), Cao, G., and Lee (2019)
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Singular controls
Impulse controls
MFGs with general forms of controls

Example: cash management

m deterministic model
Baumol (1952), Miller and Orr (1966)

m stochastic model with fixed and proportional cost
Eppen and Fama (1968),
Constantinides and Richard (1978)
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Singular controls
Impulse controls
MFGs with general forms of controls

Impulse controls

m Quasi-Variational Inequalities:
Caffarelli and Friedman(1978, 1979), Bensoussan and Lions (1982)

m inventory controls:
Harrison and Taylor (1978), Harrison, Sellke, and Taylor (1983),
Sulem (1986)

m portfolio management with transaction cost:
Davis and Norman ('90), Korn (1998, 1999), @ksendal and Sulem
(2002)

m exchange rates:
Jeanblanc-Piqué (1993), Cadenillas and Zapatero (1999),

m Insurance models: Candenillas, Choulli, Taksar and Zhang (2006)
m liquidity risk: Ly Vath et al. (2007)
m irreversible investment: Scheinkman and Zariphopoulou (2001)
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Singular controls
Impulse controls
MFGs with general forms of controls

Cash management

m cash balance as inventory for exchange
m withdrawal from cash balance at the end of each period
m fixed cost for broker's fee and proportional holding cost
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MFGs with general forms of controls

Constantinides and Richard (1978)

X: € R™. cash balance at time t

m without intervention,
X(t) = pt+oW(t), X(0)=x,

where {W;}¢>0 a standard Brownian motion
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Singular controls
Impulse controls

MFGs with general forms of controls

m with intervention ¢ = {7,,&p}n>0 € A

dXe = pdt + cdW; + > 6(t = 7)€, Xo- = x

n=1
m {7,}n>1 a sequence of stopping times w.r.t. {FV} s.t. 7, T co ass.

m & e FY
m A the set of all such controls
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Singular controls
Impulse controls

MFGs with general forms of controls

Objective Function

pEA

= inf = f E e "C(X(t))dt "
v(x) ngAJ(X, ) = in l/o —|—Ze

m running cost C(x) = max{hx, —px} where h,p >0
m cost of control

Kt + kt >
o(x) = TR X200 e e ke >0
K- —k=x, x<0

m zero control: ¢(0) = KT >0
m discount rate r >0

Xin Guo, UC Berkeley



Singular controls
Impulse controls
MFGs with general forms of controls

Quasi-Variational Inequality (QVI)?

min{(j;v"—,uv'— rv + C7i2f¢(§)+ V(X+£)} =0

m consider X(t—) = x, time interval [t, t + At]
m finite action space: either no control or control at time t
m no control:
o t+AL _p(s—t) —rdt _
vIX(t=))<E|[, e C(X(s))ds| + e "v(X(t—) + AX)
m control at time t: v(X(t—)) < infe #(&) + v(X(t—) + &)
m sending At to 0 and applying It3's formula

!Constantinides and Richard (1978)



Singular controls
Impulse controls
MFGs with general forms of controls

Contantinides and Richard (1978)

The (S, s) optimal strategy
m if X; € C =(q,s): no action;
m X; reaches g (or initial x < g): raise it to @ immediately
m X; reaches s (or initial x > s): lower it to S immediately
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Singular controls
Impulse controls
MFGs with general forms of controls

Impulse control vs regular control

m (S, s) policy and K-convexity

Constantinides and Richard (1978)
m QVI vs classical HJB equation: additional nonlocal operators
m classical references: Benssousan and Lions (1982)

m how to adapt classical PDEs approach for regularity studies?
G. and Wu (2010), Davis, G. and Wu (2012)
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Singular controls
Impulse controls
MFGs with general forms of controls

PDE tools for regularity

m Sobolev imbedding: W?P C C1* a=1-n/p
m Schauder's estimates: Lu=f € C® = u € C>
m Calderon-Zygmund estimates: Lu=f € LP = u € W?P
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Singular controls
Impulse controls
MFGs with general forms of controls

K-convexity and regularity of PDEs

m the nonlocal operator Mu(x) := infe ¢(§) + u(x +§)
B D(x):={£ €R": Mv(x) =v(x+ &)+ B(&)}
m K-convexity is critical for the regularity of the value function
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Singular controls
Impulse controls

MFGs with general forms of controls

Key property

m For any point x € A and {(x) € D(x), then x + {(x) € C
m Mu(x) = M(x +£(x)) + B(§(x)) — K

This ensures
m a bound for the second difference quotient at x, and
® an appropriate estimate to apply Calderon-Zygmund estimate,

m and eventual W?P regularity for the value function
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Singular controls
Impulse controls
MFGs with general forms of controls

Existence of solutions to MFGs with impulse controls

Mostly open
m QVI form for “FP" equation
Bertucci (2020)

m culprit: the nonlocal operator in QVI

m only known for special cases
Basei, Cao, G. (2020) on cash management problem
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Singular controls
Impulse controls
MFGs with general forms of controls

Coming up next: N vs MFG

m MFG as an e-NE approximation to N-player games

m N # MFG
comparisons through several examples

m master equations for convergence of N to MFG, CLT, and large
deviations
Cardaliaguet, Delarue, Lasry, and Lions (2015, 2019), Delarue,
Lacker, and Ramanan (2019), Bayraktar and Cohen (2018), Cecchin
and Pelino (2018)
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